default search action
Santu Rana
Person information
Refine list
refinements active!
zoomed in on ?? of ?? records
view refined list in
export refined list as
showing all ?? records
2020 – today
- 2024
- [c98]Kiran Purohit, Soumi Das, Sourangshu Bhattacharya, Santu Rana:
A Data-Driven Defense Against Edge-Case Model Poisoning Attacks on Federated Learning. ECAI 2024: 2162-2169 - [c97]Kien Do, Dung Nguyen, Hung Le, Thao Le, Dang Nguyen, Haripriya Harikumar, Truyen Tran, Santu Rana, Svetha Venkatesh:
Revisiting the Dataset Bias Problem from a Statistical Perspective. ECAI 2024: 3120-3127 - [c96]Ajsal Shereef Palattuparambil, Thommen Karimpanal George, Santu Rana:
Personalisation via Dynamic Policy Fusion. HAI 2024: 459-461 - [c95]Manisha Senadeera, Thommen Karimpanal George, Stephan Jacobs, Sunil Gupta, Santu Rana:
EMOTE: An Explainable Architecture for Modelling the Other through Empathy. IJCAI 2024: 4876-4884 - [c94]A. V. Arun Kumar, Alistair Shilton, Sunil Gupta, Santu Rana, Stewart Greenhill, Svetha Venkatesh:
Enhanced Bayesian Optimization via Preferential Modeling of Abstract Properties. ECML/PKDD (6) 2024: 234-250 - [c93]Tuan Hoang, Santu Rana, Sunil Gupta, Svetha Venkatesh:
Learn to Unlearn for Deep Neural Networks: Minimizing Unlearning Interference with Gradient Projection. WACV 2024: 4807-4816 - [i59]Kien Do, Dung Nguyen, Hung Le, Thao Le, Dang Nguyen, Haripriya Harikumar, Truyen Tran, Santu Rana, Svetha Venkatesh:
Revisiting the Dataset Bias Problem from a Statistical Perspective. CoRR abs/2402.03577 (2024) - [i58]A. V. Arun Kumar, Alistair Shilton, Sunil Gupta, Santu Rana, Stewart Greenhill, Svetha Venkatesh:
Enhanced Bayesian Optimization via Preferential Modeling of Abstract Properties. CoRR abs/2402.17343 (2024) - [i57]Aly M. Kassem, Omar Mahmoud, Niloofar Mireshghallah, Hyunwoo Kim, Yulia Tsvetkov, Yejin Choi, Sherif Saad, Santu Rana:
Alpaca against Vicuna: Using LLMs to Uncover Memorization of LLMs. CoRR abs/2403.04801 (2024) - [i56]Alistair Shilton, Sunil Gupta, Santu Rana, Svetha Venkatesh:
Novel Kernel Models and Exact Representor Theory for Neural Networks Beyond the Over-Parameterized Regime. CoRR abs/2405.15254 (2024) - [i55]Banibrata Ghosh, Haripriya Harikumar, Khoa D. Doan, Svetha Venkatesh, Santu Rana:
Composite Concept Extraction through Backdooring. CoRR abs/2406.13411 (2024) - [i54]Ajsal Shereef Palattuparambil, Thommen George Karimpanal, Santu Rana:
Personalisation via Dynamic Policy Fusion. CoRR abs/2409.20016 (2024) - 2023
- [j22]Thommen George Karimpanal, Hung Le, Majid Abdolshah, Santu Rana, Sunil Gupta, Truyen Tran, Svetha Venkatesh:
Balanced Q-learning: Combining the influence of optimistic and pessimistic targets. Artif. Intell. 325: 104021 (2023) - [c92]Maxence Hussonnois, Thommen George Karimpanal, Santu Rana:
Controlled Diversity with Preference : Towards Learning a Diverse Set of Desired Skills. AAMAS 2023: 1135-1143 - [c91]Prashant W. Patil, Sunil Gupta, Santu Rana, Svetha Venkatesh, Subrahmanyam Murala:
Multi-weather Image Restoration via Domain Translation. ICCV 2023: 21639-21648 - [c90]Alistair Shilton, Sunil Gupta, Santu Rana, Svetha Venkatesh:
Gradient Descent in Neural Networks as Sequential Learning in Reproducing Kernel Banach Space. ICML 2023: 31435-31488 - [i53]Alistair Shilton, Sunil Gupta, Santu Rana, Svetha Venkatesh:
Gradient Descent in Neural Networks as Sequential Learning in RKBS. CoRR abs/2302.00205 (2023) - [i52]Buddhika Laknath Semage, Thommen George Karimpanal, Santu Rana, Svetha Venkatesh:
Zero-shot Sim2Real Adaptation Across Environments. CoRR abs/2302.04013 (2023) - [i51]Sunil Gupta, Alistair Shilton, Arun Kumar A. V., Shannon Ryan, Majid Abdolshah, Hung Le, Santu Rana, Julian Berk, Mahad Rashid, Svetha Venkatesh:
BO-Muse: A human expert and AI teaming framework for accelerated experimental design. CoRR abs/2303.01684 (2023) - [i50]Maxence Hussonnois, Thommen George Karimpanal, Santu Rana:
Controlled Diversity with Preference : Towards Learning a Diverse Set of Desired Skills. CoRR abs/2303.04592 (2023) - [i49]Kiran Purohit, Soumi Das, Sourangshu Bhattacharya, Santu Rana:
LearnDefend: Learning to Defend against Targeted Model-Poisoning Attacks on Federated Learning. CoRR abs/2305.02022 (2023) - [i48]Manisha Senadeera, Thommen Karimpanal George, Sunil Gupta, Stephan Jacobs, Santu Rana:
EMOTE: An Explainable architecture for Modelling the Other Through Empathy. CoRR abs/2306.00295 (2023) - [i47]Manisha Senadeera, Santu Rana, Sunil Gupta, Svetha Venkatesh:
Predictive Modeling through Hyper-Bayesian Optimization. CoRR abs/2308.00285 (2023) - [i46]Thommen George Karimpanal, Buddhika Laknath Semage, Santu Rana, Hung Le, Truyen Tran, Sunil Gupta, Svetha Venkatesh:
LaGR-SEQ: Language-Guided Reinforcement Learning with Sample-Efficient Querying. CoRR abs/2308.13542 (2023) - [i45]Kishan R. Nagiredla, Buddhika Laknath Semage, Thommen George Karimpanal, Arun Kumar A. V., Santu Rana:
Sample-Efficient Co-Design of Robotic Agents Using Multi-fidelity Training on Universal Policy Network. CoRR abs/2309.04085 (2023) - [i44]Tuan Hoang, Santu Rana, Sunil Gupta, Svetha Venkatesh:
Learn to Unlearn for Deep Neural Networks: Minimizing Unlearning Interference with Gradient Projection. CoRR abs/2312.04095 (2023) - 2022
- [j21]Haripriya Harikumar, Santu Rana, Sunil Gupta, Thin Nguyen, Ramachandra Kaimal, Svetha Venkatesh:
Prescriptive analytics with differential privacy. Int. J. Data Sci. Anal. 13(2): 123-138 (2022) - [j20]Deepthi Praveenlal Kuttichira, Sunil Gupta, Dang Nguyen, Santu Rana, Svetha Venkatesh:
Verification of integrity of deployed deep learning models using Bayesian Optimization. Knowl. Based Syst. 241: 108238 (2022) - [j19]Prashant W. Patil, Sunil Gupta, Santu Rana, Svetha Venkatesh:
Dual-frame spatio-temporal feature modulation for video enhancement. Pattern Recognit. 130: 108822 (2022) - [c89]Alistair Shilton, Sunil Gupta, Santu Rana, Arun Kumar Anjanapura Venkatesh, Svetha Venkatesh:
TRF: Learning Kernels with Tuned Random Features. AAAI 2022: 8286-8294 - [c88]Hung Tran-The, Sunil Gupta, Santu Rana, Svetha Venkatesh:
Regret Bounds for Expected Improvement Algorithms in Gaussian Process Bandit Optimization. AISTATS 2022: 8715-8737 - [c87]Manisha Senadeera, Thommen George Karimpanal, Sunil Gupta, Santu Rana:
Sympathy-based Reinforcement Learning Agents. AAMAS 2022: 1164-1172 - [c86]Prashant W. Patil, Sunil Gupta, Santu Rana, Svetha Venkatesh:
Video Restoration Framework and Its Meta-adaptations to Data-Poor Conditions. ECCV (28) 2022: 143-160 - [c85]Kien Do, Haripriya Harikumar, Hung Le, Dung Nguyen, Truyen Tran, Santu Rana, Dang Nguyen, Willy Susilo, Svetha Venkatesh:
Towards Effective and Robust Neural Trojan Defenses via Input Filtering. ECCV (5) 2022: 283-300 - [c84]Buddhika Laknath Semage, Thommen George Karimpanal, Santu Rana, Svetha Venkatesh:
Intuitive Physics Guided Exploration for Sample Efficient Sim2real Transfer. ICPR Workshops (2) 2022: 674-686 - [c83]Buddhika Laknath Semage, Thommen George Karimpanal, Santu Rana, Svetha Venkatesh:
Fast Model-based Policy Search for Universal Policy Networks. ICPR 2022: 2314-2320 - [c82]Buddhika Laknath Semage, Thommen George Karimpanal, Santu Rana, Svetha Venkatesh:
Uncertainty Aware System Identification with Universal Policies. ICPR 2022: 2321-2327 - [c81]Kien Do, Hung Le, Dung Nguyen, Dang Nguyen, Haripriya Harikumar, Truyen Tran, Santu Rana, Svetha Venkatesh:
Momentum Adversarial Distillation: Handling Large Distribution Shifts in Data-Free Knowledge Distillation. NeurIPS 2022 - [c80]Hung Tran-The, Sunil Gupta, Santu Rana, Tuan Truong, Long Tran-Thanh, Svetha Venkatesh:
Expected Improvement for Contextual Bandits. NeurIPS 2022 - [c79]Arun Kumar A. V., Santu Rana, Alistair Shilton, Svetha Venkatesh:
Human-AI Collaborative Bayesian Optimisation. NeurIPS 2022 - [c78]Preeti Gopal, Sunil Gupta, Santu Rana, Vuong Le, Trong Nguyen, Svetha Venkatesh:
Real-Time Skill Discovery in Intelligent Virtual Assistants. PAKDD (1) 2022: 315-327 - [i43]Buddhika Laknath Semage, Thommen George Karimpanal, Santu Rana, Svetha Venkatesh:
Fast Model-based Policy Search for Universal Policy Networks. CoRR abs/2202.05843 (2022) - [i42]Buddhika Laknath Semage, Thommen George Karimpanal, Santu Rana, Svetha Venkatesh:
Uncertainty Aware System Identification with Universal Policies. CoRR abs/2202.05844 (2022) - [i41]Kien Do, Haripriya Harikumar, Hung Le, Dung Nguyen, Truyen Tran, Santu Rana, Dang Nguyen, Willy Susilo, Svetha Venkatesh:
Towards Effective and Robust Neural Trojan Defenses via Input Filtering. CoRR abs/2202.12154 (2022) - [i40]Hung Tran-The, Sunil Gupta, Santu Rana, Svetha Venkatesh:
Regret Bounds for Expected Improvement Algorithms in Gaussian Process Bandit Optimization. CoRR abs/2203.07875 (2022) - [i39]Phuoc Nguyen, Truyen Tran, Ky Le, Sunil Gupta, Santu Rana, Dang Nguyen, Trong Nguyen, Shannon Ryan, Svetha Venkatesh:
Fast Conditional Network Compression Using Bayesian HyperNetworks. CoRR abs/2205.06404 (2022) - [i38]Haripriya Harikumar, Santu Rana, Kien Do, Sunil Gupta, Wei Zong, Willy Susilo, Svetha Venkatesh:
Defense Against Multi-target Trojan Attacks. CoRR abs/2207.03895 (2022) - [i37]Kien Do, Hung Le, Dung Nguyen, Dang Nguyen, Haripriya Harikumar, Truyen Tran, Santu Rana, Svetha Venkatesh:
Momentum Adversarial Distillation: Handling Large Distribution Shifts in Data-Free Knowledge Distillation. CoRR abs/2209.10359 (2022) - 2021
- [j18]Haripriya Harikumar, Thomas P. Quinn, Santu Rana, Sunil Gupta, Svetha Venkatesh:
Personalized single-cell networks: a framework to predict the response of any gene to any drug for any patient. BioData Min. 14(1) (2021) - [j17]Dang Nguyen, Sunil Gupta, Santu Rana, Alistair Shilton, Svetha Venkatesh:
Fairness improvement for black-box classifiers with Gaussian process. Inf. Sci. 576: 542-556 (2021) - [j16]Phuc Luong, Dang Nguyen, Sunil Gupta, Santu Rana, Svetha Venkatesh:
Adaptive cost-aware Bayesian optimization. Knowl. Based Syst. 232: 107481 (2021) - [c77]Huong Ha, Sunil Gupta, Santu Rana, Svetha Venkatesh:
High Dimensional Level Set Estimation with Bayesian Neural Network. AAAI 2021: 12095-12103 - [c76]Majid Abdolshah, Hung Le, Thommen George Karimpanal, Sunil Gupta, Santu Rana, Svetha Venkatesh:
A New Representation of Successor Features for Transfer across Dissimilar Environments. ICML 2021: 1-9 - [c75]Hung Tran-The, Sunil Gupta, Santu Rana, Svetha Venkatesh:
Bayesian Optimistic Optimisation with Exponentially Decaying Regret. ICML 2021: 10390-10400 - [c74]Wei Zong, Yang-Wai Chow, Willy Susilo, Santu Rana, Svetha Venkatesh:
Targeted Universal Adversarial Perturbations for Automatic Speech Recognition. ISC 2021: 358-373 - [c73]Arun Kumar Anjanapura Venkatesh, Alistair Shilton, Santu Rana, Sunil Gupta, Svetha Venkatesh:
Kernel Functional Optimisation. NeurIPS 2021: 4725-4737 - [c72]Ang Yang, Cheng Li, Santu Rana, Sunil Gupta, Svetha Venkatesh:
Sparse Spectrum Gaussian Process for Bayesian Optimization. PAKDD (2) 2021: 257-268 - [c71]Phuoc Nguyen, Truyen Tran, Sunil Gupta, Santu Rana, Hieu-Chi Dam, Svetha Venkatesh:
Variational Hyper-encoding Networks. ECML/PKDD (2) 2021: 100-115 - [c70]Dang Nguyen, Sunil Gupta, Trong Nguyen, Santu Rana, Phuoc Nguyen, Truyen Tran, Ky Le, Shannon Ryan, Svetha Venkatesh:
Knowledge Distillation with Distribution Mismatch. ECML/PKDD (2) 2021: 250-265 - [c69]Phuoc Nguyen, Truyen Tran, Ky Le, Sunil Gupta, Santu Rana, Dang Nguyen, Trong Nguyen, Shannon Ryan, Svetha Venkatesh:
Fast Conditional Network Compression Using Bayesian HyperNetworks. ECML/PKDD (3) 2021: 330-345 - [i36]Huong Ha, Sunil Gupta, Santu Rana, Svetha Venkatesh:
ALT-MAS: A Data-Efficient Framework for Active Testing of Machine Learning Algorithms. CoRR abs/2104.04999 (2021) - [i35]Buddhika Laknath Semage, Thommen George Karimpanal, Santu Rana, Svetha Venkatesh:
Intuitive Physics Guided Exploration for Sample Efficient Sim2real Transfer. CoRR abs/2104.08795 (2021) - [i34]Hung Tran-The, Sunil Gupta, Santu Rana, Svetha Venkatesh:
Bayesian Optimistic Optimisation with Exponentially Decaying Regret. CoRR abs/2105.04332 (2021) - [i33]Majid Abdolshah, Hung Le, Thommen George Karimpanal, Sunil Gupta, Santu Rana, Svetha Venkatesh:
A New Representation of Successor Features for Transfer across Dissimilar Environments. CoRR abs/2107.08426 (2021) - [i32]Hung Tran-The, Sunil Gupta, Thanh Nguyen-Tang, Santu Rana, Svetha Venkatesh:
Combining Online Learning and Offline Learning for Contextual Bandits with Deficient Support. CoRR abs/2107.11533 (2021) - [i31]Majid Abdolshah, Hung Le, Thommen George Karimpanal, Sunil Gupta, Santu Rana, Svetha Venkatesh:
Plug and Play, Model-Based Reinforcement Learning. CoRR abs/2108.08960 (2021) - [i30]Haripriya Harikumar, Kien Do, Santu Rana, Sunil Gupta, Svetha Venkatesh:
Semantic Host-free Trojan Attack. CoRR abs/2110.13414 (2021) - [i29]Thommen George Karimpanal, Hung Le, Majid Abdolshah, Santu Rana, Sunil Gupta, Truyen Tran, Svetha Venkatesh:
Balanced Q-learning: Combining the Influence of Optimistic and Pessimistic Targets. CoRR abs/2111.02787 (2021) - 2020
- [j15]Stewart Greenhill, Santu Rana, Sunil Gupta, Pratibha Vellanki, Svetha Venkatesh:
Bayesian Optimization for Adaptive Experimental Design: A Review. IEEE Access 8: 13937-13948 (2020) - [j14]Tinu Theckel Joy, Santu Rana, Sunil Gupta, Svetha Venkatesh:
Batch Bayesian optimization using multi-scale search. Knowl. Based Syst. 187 (2020) - [j13]Julian Berk, Sunil Gupta, Santu Rana, Vu Nguyen, Svetha Venkatesh:
Bayesian optimisation in unknown bounded search domains. Knowl. Based Syst. 195: 105645 (2020) - [j12]Anil Ramachandran, Sunil Gupta, Santu Rana, Cheng Li, Svetha Venkatesh:
Incorporating expert prior in Bayesian optimisation via space warping. Knowl. Based Syst. 195: 105663 (2020) - [j11]Tinu Theckel Joy, Santu Rana, Sunil Gupta, Svetha Venkatesh:
Fast hyperparameter tuning using Bayesian optimization with directional derivatives. Knowl. Based Syst. 205: 106247 (2020) - [j10]Steven Allender, Joshua Hayward, Sunil Gupta, A. Sanigorski, Santu Rana, Hugh Seward, Stephan Jacobs, Svetha Venkatesh:
Bayesian strategy selection identifies optimal solutions to complex problems using an example from GP prescribing. npj Digit. Medicine 3 (2020) - [c68]Hung Tran-The, Sunil Gupta, Santu Rana, Svetha Venkatesh:
Trading Convergence Rate with Computational Budget in High Dimensional Bayesian Optimization. AAAI 2020: 2425-2432 - [c67]Dang Nguyen, Sunil Gupta, Santu Rana, Alistair Shilton, Svetha Venkatesh:
Bayesian Optimization for Categorical and Category-Specific Continuous Inputs. AAAI 2020: 5256-5263 - [c66]Alistair Shilton, Sunil Gupta, Santu Rana, Pratibha Vellanki, Cheng Li, Svetha Venkatesh, Laurence Park, Alessandra Sutti, David Rubin, Thomas Dorin, Alireza Vahid, Murray Height, Teo Slezak:
Accelerated Bayesian Optimisation through Weight-Prior Tuning. AISTATS 2020: 635-645 - [c65]Thanh Tang Nguyen, Sunil Gupta, Huong Ha, Santu Rana, Svetha Venkatesh:
Distributionally Robust Bayesian Quadrature Optimization. AISTATS 2020: 1921-1931 - [c64]Thomas P. Quinn, Dang Nguyen, Santu Rana, Sunil Gupta, Svetha Venkatesh:
DeepCoDA: personalized interpretability for compositional health data. ICML 2020: 7877-7886 - [c63]Cheng Li, Santu Rana, Andrew Gill, Dang Nguyen, Sunil Gupta, Svetha Venkatesh:
Factor Screening using Bayesian Active Learning and Gaussian Process Meta-Modelling. ICPR 2020: 3288-3295 - [c62]Julian Berk, Sunil Gupta, Santu Rana, Svetha Venkatesh:
Randomised Gaussian Process Upper Confidence Bound for Bayesian Optimisation. IJCAI 2020: 2284-2290 - [c61]Thommen George Karimpanal, Santu Rana, Sunil Gupta, Truyen Tran, Svetha Venkatesh:
Learning Transferable Domain Priors for Safe Exploration in Reinforcement Learning. IJCNN 2020: 1-10 - [c60]Hung Tran-The, Sunil Gupta, Santu Rana, Huong Ha, Svetha Venkatesh:
Sub-linear Regret Bounds for Bayesian Optimisation in Unknown Search Spaces. NeurIPS 2020 - [c59]Manisha Senadeera, Santu Rana, Sunil Gupta, Svetha Venkatesh:
Level Set Estimation with Search Space Warping. PAKDD (2) 2020: 827-839 - [c58]Haripriya Harikumar, Vuong Le, Santu Rana, Sourangshu Bhattacharya, Sunil Gupta, Svetha Venkatesh:
Scalable Backdoor Detection in Neural Networks. ECML/PKDD (2) 2020: 289-304 - [c57]Phuc Luong, Dang Nguyen, Sunil Gupta, Santu Rana, Svetha Venkatesh:
Bayesian Optimization with Missing Inputs. ECML/PKDD (2) 2020: 691-706 - [c56]Duc Nguyen, Phuoc Nguyen, Kien Do, Santu Rana, Sunil Gupta, Truyen Tran:
Unsupervised Anomaly Detection on Temporal Multiway Data. SSCI 2020: 1059-1066 - [i28]Thanh Tang Nguyen, Sunil Gupta, Huong Ha, Santu Rana, Svetha Venkatesh:
Distributionally Robust Bayesian Quadrature Optimization. CoRR abs/2001.06814 (2020) - [i27]Cheng Li, Sunil Gupta, Santu Rana, Vu Nguyen, Antonio Robles-Kelly, Svetha Venkatesh:
Incorporating Expert Prior Knowledge into Experimental Design via Posterior Sampling. CoRR abs/2002.11256 (2020) - [i26]Anil Ramachandran, Sunil Gupta, Santu Rana, Cheng Li, Svetha Venkatesh:
Incorporating Expert Prior in Bayesian Optimisation via Space Warping. CoRR abs/2003.12250 (2020) - [i25]Phuoc Nguyen, Truyen Tran, Sunil Gupta, Santu Rana, Hieu-Chi Dam, Svetha Venkatesh:
HyperVAE: A Minimum Description Length Variational Hyper-Encoding Network. CoRR abs/2005.08482 (2020) - [i24]Thomas P. Quinn, Dang Nguyen, Santu Rana, Sunil Gupta, Svetha Venkatesh:
DeepCoDA: personalized interpretability for compositional health data. CoRR abs/2006.01392 (2020) - [i23]Julian Berk, Sunil Gupta, Santu Rana, Svetha Venkatesh:
Randomised Gaussian Process Upper Confidence Bound for Bayesian Optimisation. CoRR abs/2006.04296 (2020) - [i22]Haripriya Harikumar, Vuong Le, Santu Rana, Sourangshu Bhattacharya, Sunil Gupta, Svetha Venkatesh:
Scalable Backdoor Detection in Neural Networks. CoRR abs/2006.05646 (2020) - [i21]Phuc Luong, Dang Nguyen, Sunil Gupta, Santu Rana, Svetha Venkatesh:
Bayesian Optimization with Missing Inputs. CoRR abs/2006.10948 (2020) - [i20]Hung Tran-The, Sunil Gupta, Santu Rana, Huong Ha, Svetha Venkatesh:
Sub-linear Regret Bounds for Bayesian Optimisation in Unknown Search Spaces. CoRR abs/2009.02539 (2020) - [i19]Alistair Shilton, Sunil Gupta, Santu Rana, Svetha Venkatesh:
Sequential Subspace Search for Functional Bayesian Optimization Incorporating Experimenter Intuition. CoRR abs/2009.03543 (2020) - [i18]Duc Nguyen, Phuoc Nguyen, Kien Do, Santu Rana, Sunil Gupta, Truyen Tran:
Unsupervised Anomaly Detection on Temporal Multiway Data. CoRR abs/2009.09443 (2020) - [i17]Anh-Cat Le-Ngo, Truyen Tran, Santu Rana, Sunil Gupta, Svetha Venkatesh:
Logically Consistent Loss for Visual Question Answering. CoRR abs/2011.10094 (2020) - [i16]Huong Ha, Sunil Gupta, Santu Rana, Svetha Venkatesh:
High Dimensional Level Set Estimation with Bayesian Neural Network. CoRR abs/2012.09973 (2020)
2010 – 2019
- 2019
- [j9]Tinu Theckel Joy, Santu Rana, Sunil Gupta, Svetha Venkatesh:
A flexible transfer learning framework for Bayesian optimization with convergence guarantee. Expert Syst. Appl. 115: 656-672 (2019) - [j8]Vu Nguyen, Sunil Gupta, Santu Rana, Cheng Li, Svetha Venkatesh:
Filtering Bayesian optimization approach in weakly specified search space. Knowl. Inf. Syst. 60(1): 385-413 (2019) - [c55]Pratibha Vellanki, Santu Rana, Sunil Gupta, David Rubin de Celis Leal, Alessandra Sutti, Murray Height, Svetha Venkatesh:
Bayesian Functional Optimisation with Shape Prior. AAAI 2019: 1617-1624 - [c54]A. V. Arun Kumar, Santu Rana, Cheng Li, Sunil Gupta, Alistair Shilton, Svetha Venkatesh:
Bayesian Optimisation for Objective Functions with Varying Smoothness. Australasian Conference on Artificial Intelligence 2019: 460-472 - [c53]Phuc Luong, Sunil Gupta, Dang Nguyen, Santu Rana, Svetha Venkatesh:
Bayesian Optimization with Discrete Variables. Australasian Conference on Artificial Intelligence 2019: 473-484 - [c52]Deepthi Praveenlal Kuttichira, Sunil Gupta, Dang Nguyen, Santu Rana, Svetha Venkatesh:
Detection of Compromised Models Using Bayesian Optimization. Australasian Conference on Artificial Intelligence 2019: 485-496 - [c51]Anil Ramachandran, Sunil Gupta, Santu Rana, Svetha Venkatesh:
Information-Theoretic Multi-task Learning Framework for Bayesian Optimisation. Australasian Conference on Artificial Intelligence 2019: 497-509 - [c50]Vu Nguyen, Sunil Gupta, Santu Rana, My T. Thai, Cheng Li, Svetha Venkatesh:
Efficient Bayesian Optimization for Uncertainty Reduction Over Perceived Optima Locations. ICDM 2019: 1270-1275 - [c49]Huong Ha, Santu Rana, Sunil Gupta, Thanh Tang Nguyen, Hung Tran-The, Svetha Venkatesh:
Bayesian Optimization with Unknown Search Space. NeurIPS 2019: 11772-11781 - [c48]Majid Abdolshah, Alistair Shilton, Santu Rana, Sunil Gupta, Svetha Venkatesh:
Multi-objective Bayesian optimisation with preferences over objectives. NeurIPS 2019: 12214-12224 - [c47]Deepthi Praveenlal Kuttichira, Sunil Gupta, Cheng Li, Santu Rana, Svetha Venkatesh:
Explaining Black-Box Models Using Interpretable Surrogates. PRICAI (1) 2019: 3-15 - [c46]Phuoc Nguyen, Truyen Tran, Sunil Gupta, Santu Rana, Matthew Barnett, Svetha Venkatesh:
Incomplete Conditional Density Estimation for Fast Materials Discovery. SDM 2019: 549-557 - [i15]Tinu Theckel Joy, Santu Rana, Sunil Gupta, Svetha Venkatesh:
Fast Hyperparameter Tuning using Bayesian Optimization with Directional Derivatives. CoRR abs/1902.02416 (2019) - [i14]