
Soheil Feizi
Refine list

refinements active!
zoomed in on ?? of ?? records
view refined list in
export refined list as
2020 – today
- 2021
- [i46]Vasu Singla, Sahil Singla, David Jacobs, Soheil Feizi:
Low Curvature Activations Reduce Overfitting in Adversarial Training. CoRR abs/2102.07861 (2021) - 2020
- [j10]Soheil Feizi
, Farzan Farnia, Tony Ginart, David Tse:
Understanding GANs in the LQG Setting: Formulation, Generalization and Stability. IEEE J. Sel. Areas Inf. Theory 1(1): 304-311 (2020) - [j9]Soheil Feizi
, Gerald T. Quon, Mariana Recamonde Mendoza
, Muriel Médard, Manolis Kellis, Ali Jadbabaie
:
Spectral Alignment of Graphs. IEEE Trans. Netw. Sci. Eng. 7(3): 1182-1197 (2020) - [c34]Micah Goldblum, Liam Fowl, Soheil Feizi, Tom Goldstein:
Adversarially Robust Distillation. AAAI 2020: 3996-4003 - [c33]Alexander Levine, Soheil Feizi:
Robustness Certificates for Sparse Adversarial Attacks by Randomized Ablation. AAAI 2020: 4585-4593 - [c32]Luke J. O'Connor, Muriel Médard, Soheil Feizi:
Maximum Likelihood Embedding of Logistic Random Dot Product Graphs. AAAI 2020: 5289-5297 - [c31]Phillip Pope, Yogesh Balaji, Soheil Feizi:
Adversarial Robustness of Flow-Based Generative Models. AISTATS 2020: 3795-3805 - [c30]Alexander Levine, Soheil Feizi:
Wasserstein Smoothing: Certified Robustness against Wasserstein Adversarial Attacks. AISTATS 2020: 3938-3947 - [c29]Neehar Peri, Neal Gupta, W. Ronny Huang, Liam Fowl, Chen Zhu, Soheil Feizi, Tom Goldstein, John P. Dickerson:
Deep k-NN Defense Against Clean-Label Data Poisoning Attacks. ECCV Workshops (1) 2020: 55-70 - [c28]Samyadeep Basu, Xuchen You, Soheil Feizi:
On Second-Order Group Influence Functions for Black-Box Predictions. ICML 2020: 715-724 - [c27]Aounon Kumar, Alexander Levine, Tom Goldstein, Soheil Feizi:
Curse of Dimensionality on Randomized Smoothing for Certifiable Robustness. ICML 2020: 5458-5467 - [c26]Sahil Singla, Soheil Feizi:
Second-Order Provable Defenses against Adversarial Attacks. ICML 2020: 8981-8991 - [c25]Alexander Levine, Soheil Feizi:
(De)Randomized Smoothing for Certifiable Defense against Patch Attacks. NeurIPS 2020 - [c24]Yogesh Balaji, Rama Chellappa, Soheil Feizi:
Robust Optimal Transport with Applications in Generative Modeling and Domain Adaptation. NeurIPS 2020 - [c23]Aya Abdelsalam Ismail, Mohamed K. Gunady, Héctor Corrada Bravo, Soheil Feizi:
Benchmarking Deep Learning Interpretability in Time Series Predictions. NeurIPS 2020 - [c22]Aounon Kumar, Alexander Levine, Soheil Feizi, Tom Goldstein:
Certifying Confidence via Randomized Smoothing. NeurIPS 2020 - [c21]Wei-An Lin, Chun Pong Lau, Alexander Levine, Rama Chellappa, Soheil Feizi:
Dual Manifold Adversarial Robustness: Defense against Lp and non-Lp Adversarial Attacks. NeurIPS 2020 - [i45]Aounon Kumar, Alexander Levine, Tom Goldstein, Soheil Feizi:
Curse of Dimensionality on Randomized Smoothing for Certifiable Robustness. CoRR abs/2002.03239 (2020) - [i44]Alexander Levine, Soheil Feizi:
(De)Randomized Smoothing for Certifiable Defense against Patch Attacks. CoRR abs/2002.10733 (2020) - [i43]Mucong Ding, Constantinos Daskalakis, Soheil Feizi:
Subadditivity of Probability Divergences on Bayes-Nets with Applications to Time Series GANs. CoRR abs/2003.00652 (2020) - [i42]Y. Wu, Yogesh Balaji, B. Vinzamuri, Soheil Feizi:
Mirrored Autoencoders with Simplex Interpolation for Unsupervised Anomaly Detection. CoRR abs/2003.10713 (2020) - [i41]Sahil Singla, Soheil Feizi:
Second-Order Provable Defenses against Adversarial Attacks. CoRR abs/2006.00731 (2020) - [i40]Vedant Nanda, Samuel Dooley, Sahil Singla, Soheil Feizi, John P. Dickerson:
Fairness Through Robustness: Investigating Robustness Disparity in Deep Learning. CoRR abs/2006.12621 (2020) - [i39]Cassidy Laidlaw, Sahil Singla, Soheil Feizi:
Perceptual Adversarial Robustness: Defense Against Unseen Threat Models. CoRR abs/2006.12655 (2020) - [i38]Samyadeep Basu, Phillip Pope, Soheil Feizi:
Influence Functions in Deep Learning Are Fragile. CoRR abs/2006.14651 (2020) - [i37]Alexander Levine, Soheil Feizi:
Deep Partition Aggregation: Provable Defense against General Poisoning Attacks. CoRR abs/2006.14768 (2020) - [i36]Wei-An Lin, Chun Pong Lau, Alexander Levine, Rama Chellappa, Soheil Feizi:
Dual Manifold Adversarial Robustness: Defense against Lp and non-Lp Adversarial Attacks. CoRR abs/2009.02470 (2020) - [i35]Aounon Kumar, Alexander Levine, Soheil Feizi, Tom Goldstein:
Certifying Confidence via Randomized Smoothing. CoRR abs/2009.08061 (2020) - [i34]Pirazh Khorramshahi, Hossein Souri, Rama Chellappa, Soheil Feizi:
GANs with Variational Entropy Regularizers: Applications in Mitigating the Mode-Collapse Issue. CoRR abs/2009.11921 (2020) - [i33]Neha Mukund Kalibhat, Yogesh Balaji, Soheil Feizi:
Winning Lottery Tickets in Deep Generative Models. CoRR abs/2010.02350 (2020) - [i32]Yogesh Balaji, Rama Chellappa, Soheil Feizi:
Robust Optimal Transport with Applications in Generative Modeling and Domain Adaptation. CoRR abs/2010.05862 (2020) - [i31]Alexander Levine, Aounon Kumar, Thomas Goldstein, Soheil Feizi:
Tight Second-Order Certificates for Randomized Smoothing. CoRR abs/2010.10549 (2020) - [i30]Aya Abdelsalam Ismail, Mohamed K. Gunady, Héctor Corrada Bravo, Soheil Feizi:
Benchmarking Deep Learning Interpretability in Time Series Predictions. CoRR abs/2010.13924 (2020)
2010 – 2019
- 2019
- [j8]Soheil Feizi
, Muriel Médard, Gerald T. Quon, Manolis Kellis, Ken Duffy
:
Network Infusion to Infer Information Sources in Networks. IEEE Trans. Netw. Sci. Eng. 6(3): 402-417 (2019) - [c20]Yogesh Balaji, Rama Chellappa, Soheil Feizi:
Normalized Wasserstein for Mixture Distributions With Applications in Adversarial Learning and Domain Adaptation. ICCV 2019: 6499-6507 - [c19]Ali Shafahi, W. Ronny Huang, Christoph Studer, Soheil Feizi, Tom Goldstein:
Are adversarial examples inevitable? ICLR (Poster) 2019 - [c18]Yogesh Balaji, Hamed Hassani, Rama Chellappa, Soheil Feizi:
Entropic GANs meet VAEs: A Statistical Approach to Compute Sample Likelihoods in GANs. ICML 2019: 414-423 - [c17]Sahil Singla, Eric Wallace, Shi Feng, Soheil Feizi:
Understanding Impacts of High-Order Loss Approximations and Features in Deep Learning Interpretation. ICML 2019: 5848-5856 - [c16]Shouvanik Chakrabarti, Yiming Huang, Tongyang Li, Soheil Feizi, Xiaodi Wu:
Quantum Wasserstein Generative Adversarial Networks. NeurIPS 2019: 6778-6789 - [c15]Cassidy Laidlaw, Soheil Feizi:
Functional Adversarial Attacks. NeurIPS 2019: 10408-10418 - [c14]Aya Abdelsalam Ismail, Mohamed K. Gunady, Luiz Pessoa, Héctor Corrada Bravo, Soheil Feizi:
Input-Cell Attention Reduces Vanishing Saliency of Recurrent Neural Networks. NeurIPS 2019: 10813-10823 - [i29]Angeline Aguinaldo, Ping-Yeh Chiang, Alexander Gain, Ameya Patil, Kolten Pearson, Soheil Feizi:
Compressing GANs using Knowledge Distillation. CoRR abs/1902.00159 (2019) - [i28]Sahil Singla, Eric Wallace, Shi Feng, Soheil Feizi:
Understanding Impacts of High-Order Loss Approximations and Features in Deep Learning Interpretation. CoRR abs/1902.00407 (2019) - [i27]Yogesh Balaji, Rama Chellappa, Soheil Feizi:
Normalized Wasserstein Distance for Mixture Distributions with Applications in Adversarial Learning and Domain Adaptation. CoRR abs/1902.00415 (2019) - [i26]Sahil Singla, Soheil Feizi:
Robustness Certificates Against Adversarial Examples for ReLU Networks. CoRR abs/1902.01235 (2019) - [i25]Micah Goldblum, Liam Fowl, Soheil Feizi, Tom Goldstein:
Adversarially Robust Distillation. CoRR abs/1905.09747 (2019) - [i24]Alexander Levine, Sahil Singla, Soheil Feizi:
Certifiably Robust Interpretation in Deep Learning. CoRR abs/1905.12105 (2019) - [i23]Samuel Barham, Soheil Feizi:
Interpretable Adversarial Training for Text. CoRR abs/1905.12864 (2019) - [i22]Cassidy Laidlaw, Soheil Feizi:
Functional Adversarial Attacks. CoRR abs/1906.00001 (2019) - [i21]Neal Gupta, W. Ronny Huang, Liam Fowl, Chen Zhu, Soheil Feizi, Tom Goldstein, John P. Dickerson:
Strong Baseline Defenses Against Clean-Label Poisoning Attacks. CoRR abs/1909.13374 (2019) - [i20]Alexander Levine, Soheil Feizi:
Wasserstein Smoothing: Certified Robustness against Wasserstein Adversarial Attacks. CoRR abs/1910.10783 (2019) - [i19]Aya Abdelsalam Ismail, Mohamed K. Gunady, Luiz Pessoa, Héctor Corrada Bravo, Soheil Feizi:
Input-Cell Attention Reduces Vanishing Saliency of Recurrent Neural Networks. CoRR abs/1910.12370 (2019) - [i18]Shouvanik Chakrabarti, Yiming Huang, Tongyang Li
, Soheil Feizi, Xiaodi Wu:
Quantum Wasserstein Generative Adversarial Networks. CoRR abs/1911.00111 (2019) - [i17]Samyadeep Basu, Xuchen You, Soheil Feizi:
Second-Order Group Influence Functions for Black-Box Predictions. CoRR abs/1911.00418 (2019) - [i16]Phillip Pope, Yogesh Balaji, Soheil Feizi:
Adversarial Robustness of Flow-Based Generative Models. CoRR abs/1911.08654 (2019) - [i15]Alexander Levine, Soheil Feizi:
Robustness Certificates for Sparse Adversarial Attacks by Randomized Ablation. CoRR abs/1911.09272 (2019) - [i14]Sahil Singla, Soheil Feizi:
Bounding Singular Values of Convolution Layers. CoRR abs/1911.10258 (2019) - [i13]Cassidy Laidlaw, Soheil Feizi:
Playing it Safe: Adversarial Robustness with an Abstain Option. CoRR abs/1911.11253 (2019) - 2018
- [c13]Soheil Feizi, Hamid Javadi, Jesse M. Zhang, David Tse:
Porcupine Neural Networks: Approximating Neural Network Landscapes. NeurIPS 2018: 4836-4846 - [i12]Ali Shafahi, W. Ronny Huang, Christoph Studer, Soheil Feizi, Tom Goldstein:
Are adversarial examples inevitable? CoRR abs/1809.02104 (2018) - [i11]Yogesh Balaji, Hamed Hassani, Rama Chellappa, Soheil Feizi:
Entropic GANs meet VAEs: A Statistical Approach to Compute Sample Likelihoods in GANs. CoRR abs/1810.04147 (2018) - 2017
- [j7]Soheil Feizi
, Ali Makhdoumi, Ken Duffy
, Manolis Kellis, Muriel Médard:
Network Maximal Correlation. IEEE Trans. Netw. Sci. Eng. 4(4): 229-247 (2017) - [c12]Saeed Haghiri, Ali Nemati, Soheil Feizi, Amirali Amirsoleimani, Arash Ahmadi
, Majid Ahmadi:
A memristor based binary multiplier. CCECE 2017: 1-4 - [c11]Soheil Feizi, Hamid Javadi, David Tse:
Tensor Biclustering. NIPS 2017: 1311-1320 - [i10]Soheil Feizi, David Tse:
Maximally Correlated Principal Component Analysis. CoRR abs/1702.05471 (2017) - [i9]Soheil Feizi, Hamid Javadi, Jesse M. Zhang, David Tse:
Porcupine Neural Networks: (Almost) All Local Optima are Global. CoRR abs/1710.02196 (2017) - [i8]Soheil Feizi, Changho Suh, Fei Xia, David Tse:
Understanding GANs: the LQG Setting. CoRR abs/1710.10793 (2017) - 2016
- [b1]Soheil Feizi-Khankandi:
On the analysis of complex networks: fundamental limits, scalable algorithms, and applications. Massachusetts Institute of Technology, Cambridge, USA, 2016 - [i7]Soheil Feizi, Gerald T. Quon, Mariana Recamonde Mendoza, Muriel Médard, Manolis Kellis, Ali Jadbabaie:
Spectral Alignment of Networks. CoRR abs/1602.04181 (2016) - [i6]Soheil Feizi, Muriel Médard, Gerald T. Quon, Manolis Kellis, Ken R. Duffy:
Network Infusion to Infer Information Sources in Networks. CoRR abs/1606.07383 (2016) - 2015
- [j6]Roadmap Epigenomics Consortium, Anshul Kundaje
, Wouter Meuleman
, Jason Ernst, Misha Bilenky, Angela Yen, Alireza Heravi Moussavi, Pouya Kheradpour, ZhiZhuo Zhang, Jianrong Wang, Michael J. Ziller, Viren Amin, John W. Whitaker, Matthew D. Schultz, Lucas D. Ward
, Abhishek Sarkar
, Gerald T. Quon, Richard S. Sandstrom
, Matthew L. Eaton, Yi-Chieh Wu, Andreas R. Pfenning, Xinchen Wang
, Melina Claussnitzer, Yaping Liu, Cristian Coarfa, R. Alan Harris, Noam Shoresh, Charles B. Epstein
, Elizabeta Gjoneska, Danny Leung, Wei Xie, R. David Hawkins, Ryan Lister
, Chibo Hong, Philippe Gascard
, Andrew J. Mungall
, Richard A. Moore, Eric Chuah, Angela Tam, Theresa K. Canfield, R. Scott Hansen, Rajinder Kaul
, Peter J. Sabo, Mukul S. Bansal, Annaick Carles, Jesse R. Dixon, Kyle Kai-How Farh, Soheil Feizi, Rosa Karlic
, Ah-Ram Kim, Ashwinikumar Kulkarni, Daofeng Li
, Rebecca F. Lowdon, GiNell Elliott, Tim R. Mercer, Shane J. Neph, Vitor Onuchic, Paz Polak, Nisha Rajagopal, Pradipta Ray
, Richard C. Sallari, Kyle T. Siebenthall, Nicholas A. Sinnott-Armstrong, Michael Stevens, Robert E. Thurman, Jie Wu, Bo Zhang
, Xin Zhou, Arthur E. Beaudet, Laurie A. Boyer, Philip L. De Jager, Peggy J. Farnham
, Susan J. Fisher, David Haussler, Steven J. M. Jones
, Wei Li, Marco A. Marra
, Michael T. McManus
, Shamil R. Sunyaev, James A. Thomson, Thea D. Tlsty, Li-Huei Tsai, Wei Wang, Robert A. Waterland, Michael Q. Zhang, Lisa H. Chadwick, Bradley E. Bernstein, Joseph F. Costello, Joseph R. Ecker
, Martin Hirst, Alexander Meissner, Aleksandar Milosavljevic, Bing Ren, John A. Stamatoyannopoulos, Ting Wang, Manolis Kellis:
Integrative analysis of 111 reference human epigenomes Open. Nat. 518(7539): 317-330 (2015) - [i5]Jeffrey G. Andrews, Alexandros G. Dimakis, Lara Dolecek, Michelle Effros, Muriel Médard, Olgica Milenkovic, Andrea Montanari, Sriram Vishwanath, Edmund M. Yeh, Randall Berry, Ken R. Duffy, Soheil Feizi, Saul Kato, Manolis Kellis, Stuart Licht, Jon Sorenson, Lav R. Varshney, Haris Vikalo:
A Perspective on Future Research Directions in Information Theory. CoRR abs/1507.05941 (2015) - 2014
- [j5]Soheil Feizi, Muriel Médard:
On Network Functional Compression. IEEE Trans. Inf. Theory 60(9): 5387-5401 (2014) - [j4]Soheil Feizi, Georgios Angelopoulos, Vivek K. Goyal, Muriel Médard:
Backward Adaptation for Power Efficient Sampling. IEEE Trans. Signal Process. 62(16): 4327-4338 (2014) - [c10]Soheil Feizi, Daniel E. Lucani
, Chres W. Sørensen, Ali Makhdoumi, Muriel Médard:
Tunable sparse network coding for multicast networks. NetCod 2014: 1-6 - [c9]Luke J. O'Connor, Soheil Feizi:
Biclustering Usinig Message Passing. NIPS 2014: 3617-3625 - 2012
- [j3]Soheil Feizi, Vivek K. Goyal, Muriel Médard:
Time-Stampless Adaptive Nonuniform Sampling for Stochastic Signals. IEEE Trans. Signal Process. 60(10): 5440-5450 (2012) - [c8]Muriel L. Rambeloarison, Soheil Feizi, Georgios Angelopoulos, Muriel Médard:
Empirical rate-distortion study of compressive sensing-based joint source-channel coding. ACSCC 2012: 1224-1228 - [c7]Soheil Feizi, Vivek K. Goyal, Muriel Médard:
Time-stampless adaptive nonuniform sampling for stochastic signals. ICASSP 2012: 3809-3812 - 2011
- [c6]Soheil Feizi, Muriel Médard:
A power efficient sensing/communication scheme: Joint source-channel-network coding by using compressive sensing. Allerton 2011: 1048-1054 - [i4]Soheil Feizi-Khankandi, Muriel Médard:
A Power Efficient Sensing/Communication Scheme: Joint Source-Channel-Network Coding by Using Compressive Sensing. CoRR abs/1110.0428 (2011) - [i3]Soheil Feizi-Khankandi, Vivek K. Goyal, Muriel Médard:
Time-Stampless Adaptive Nonuniform Sampling for Stochastic Signals. CoRR abs/1110.3774 (2011) - 2010
- [c5]Soheil Feizi, Muriel Médard:
Cases where finding the minimum entropy coloring of a characteristic graph is a polynomial time problem. ISIT 2010: 116-120 - [i2]Soheil Feizi-Khankandi, Muriel Médard:
On Network Functional Compression. CoRR abs/1011.5496 (2010) - [i1]Soheil Feizi-Khankandi, Muriel Médard, Michelle Effros:
Compressive Sensing Over Networks. CoRR abs/1012.0955 (2010)
2000 – 2009
- 2009
- [j2]Sina Zahedpour, Soheil Feizi, Arash Amini, Mahmoud Ferdosizadeh Naeiny, Farrokh Marvasti:
Impulsive Noise Cancellation Based on Soft Decision and Recursion. IEEE Trans. Instrum. Meas. 58(8): 2780-2790 (2009) - [j1]Mohammad Ali Akhaee, Mohammad Javad Saberian, Soheil Feizi, Farokh Marvasti:
Robust Audio Data Hiding Using Correlated Quantization With Histogram-Based Detector. IEEE Trans. Multim. 11(5): 834-842 (2009) - [c4]Soheil Feizi-Khankandi, Muriel Médard:
Multi-Functional Compression with Side Information. GLOBECOM 2009: 1-5 - 2008
- [c3]Soheil Feizi, Sina Zahedpour, Mahdi Soltanolkotabi, Arash Amini, Farokh Marvasti:
Salt and pepper noise removal for image signals. ICT 2008: 1-5 - [c2]Sina Zahedpour, Soheil Feizi, Arash Amini, Mahmoud Ferdosizadeh Naeiny, Farokh Marvasti:
Impulsive noise cancellation using CFAR and iterative techniques. ICT 2008: 1-5 - [c1]Soheil Feizi-Khankandi, Farid Ashtiani:
Lower and Upper Bounds for Throughput Capacity of a Cognitive Ad Hoc Network Overlaid on a Cellular Network. WCNC 2008: 2759-2764
Coauthor Index

manage site settings
To protect your privacy, all features that rely on external API calls from your browser are turned off by default. You need to opt-in for them to become active. All settings here will be stored as cookies with your web browser. For more information see our F.A.Q.
Unpaywalled article links
Add open access links from to the list of external document links (if available).
Privacy notice: By enabling the option above, your browser will contact the API of unpaywall.org to load hyperlinks to open access articles. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Unpaywall privacy policy.
Archived links via Wayback Machine
For web page which are no longer available, try to retrieve content from the of the Internet Archive (if available).
load content from web.archive.org
Privacy notice: By enabling the option above, your browser will contact the API of web.archive.org to check for archived content of web pages that are no longer available. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Internet Archive privacy policy.
Reference lists
Add a list of references from ,
, and
to record detail pages.
load references from crossref.org and opencitations.net
Privacy notice: By enabling the option above, your browser will contact the APIs of crossref.org, opencitations.net, and semanticscholar.org to load article reference information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Crossref privacy policy and the OpenCitations privacy policy, as well as the AI2 Privacy Policy covering Semantic Scholar.
Citation data
Add a list of citing articles from and
to record detail pages.
load citations from opencitations.net
Privacy notice: By enabling the option above, your browser will contact the API of opencitations.net and semanticscholar.org to load citation information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the OpenCitations privacy policy as well as the AI2 Privacy Policy covering Semantic Scholar.
Tweets on dblp homepage
Show tweets from on the dblp homepage.
Privacy notice: By enabling the option above, your browser will contact twitter.com and twimg.com to load tweets curated by our Twitter account. At the same time, Twitter will persistently store several cookies with your web browser. While we did signal Twitter to not track our users by setting the "dnt" flag, we do not have any control over how Twitter uses your data. So please proceed with care and consider checking the Twitter privacy policy.
last updated on 2021-02-19 23:00 CET by the dblp team
all metadata released as open data under CC0 1.0 license
see also: Terms of Use | Privacy Policy | Imprint