default search action
Denis Belomestny
Person information
Refine list
refinements active!
zoomed in on ?? of ?? records
view refined list in
export refined list as
2020 – today
- 2024
- [j25]Nikita Puchkin, Sergey Samsonov, Denis Belomestny, Eric Moulines, Alexey Naumov:
Rates of convergence for density estimation with generative adversarial networks. J. Mach. Learn. Res. 25: 29:1-29:47 (2024) - [j24]Denis Belomestny, Artur Goldman, Alexey Naumov, Sergey Samsonov:
Theoretical guarantees for neural control variates in MCMC. Math. Comput. Simul. 220: 382-405 (2024) - [j23]Denis Belomestny, John Schoenmakers:
Primal-Dual Regression Approach for Markov Decision Processes with General State and Action Spaces. SIAM J. Control. Optim. 62(1): 650-679 (2024) - [c9]Daniil Tiapkin, Denis Belomestny, Daniele Calandriello, Eric Moulines, Alexey Naumov, Pierre Perrault, Michal Valko, Pierre Ménard:
Demonstration-Regularized RL. ICLR 2024 - [i19]Denis Belomestny, John Schoenmakers:
Weighted mesh algorithms for general Markov decision processes: Convergence and tractability. CoRR abs/2407.00388 (2024) - [i18]Pierre Perrault, Denis Belomestny, Pierre Ménard, Éric Moulines, Alexey Naumov, Daniil Tiapkin, Michal Valko:
A New Bound on the Cumulant Generating Function of Dirichlet Processes. CoRR abs/2409.18621 (2024) - 2023
- [j22]Denis Belomestny, Christian Bender, John Schoenmakers:
Solving Optimal Stopping Problems via Randomization and Empirical Dual Optimization. Math. Oper. Res. 48(3): 1454-1480 (2023) - [j21]Denis Belomestny, Alexey Naumov, Nikita Puchkin, Sergey Samsonov:
Simultaneous approximation of a smooth function and its derivatives by deep neural networks with piecewise-polynomial activations. Neural Networks 161: 242-253 (2023) - [c8]Daniil Tiapkin, Denis Belomestny, Daniele Calandriello, Eric Moulines, Rémi Munos, Alexey Naumov, Pierre Perrault, Yunhao Tang, Michal Valko, Pierre Ménard:
Fast Rates for Maximum Entropy Exploration. ICML 2023: 34161-34221 - [c7]Daniil Tiapkin, Denis Belomestny, Daniele Calandriello, Eric Moulines, Rémi Munos, Alexey Naumov, Pierre Perrault, Michal Valko, Pierre Ménard:
Model-free Posterior Sampling via Learning Rate Randomization. NeurIPS 2023 - [i17]Daniil Tiapkin, Denis Belomestny, Daniele Calandriello, Eric Moulines, Rémi Munos, Alexey Naumov, Pierre Perrault, Yunhao Tang, Michal Valko, Pierre Ménard:
Fast Rates for Maximum Entropy Exploration. CoRR abs/2303.08059 (2023) - [i16]Denis Belomestny, Artur Goldman, Alexey Naumov, Sergey Samsonov:
Theoretical guarantees for neural control variates in MCMC. CoRR abs/2304.01111 (2023) - [i15]Daniil Tiapkin, Denis Belomestny, Daniele Calandriello, Eric Moulines, Alexey Naumov, Pierre Perrault, Michal Valko, Pierre Ménard:
Demonstration-Regularized RL. CoRR abs/2310.17303 (2023) - [i14]Daniil Tiapkin, Denis Belomestny, Daniele Calandriello, Eric Moulines, Rémi Munos, Alexey Naumov, Pierre Perrault, Michal Valko, Pierre Ménard:
Model-free Posterior Sampling via Learning Rate Randomization. CoRR abs/2310.18186 (2023) - 2022
- [j20]Denis Belomestny, Eric Moulines, Sergey Samsonov:
Variance reduction for additive functionals of Markov chains via martingale representations. Stat. Comput. 32(1): 16 (2022) - [c6]Daniil Tiapkin, Denis Belomestny, Eric Moulines, Alexey Naumov, Sergey Samsonov, Yunhao Tang, Michal Valko, Pierre Ménard:
From Dirichlet to Rubin: Optimistic Exploration in RL without Bonuses. ICML 2022: 21380-21431 - [c5]Daniil Tiapkin, Denis Belomestny, Daniele Calandriello, Eric Moulines, Rémi Munos, Alexey Naumov, Mark Rowland, Michal Valko, Pierre Ménard:
Optimistic Posterior Sampling for Reinforcement Learning with Few Samples and Tight Guarantees. NeurIPS 2022 - [i13]Daniil Tiapkin, Denis Belomestny, Eric Moulines, Alexey Naumov, Sergey Samsonov, Yunhao Tang, Michal Valko, Pierre Ménard:
From Dirichlet to Rubin: Optimistic Exploration in RL without Bonuses. CoRR abs/2205.07704 (2022) - [i12]Maxim Kaledin, Alexander Golubev, Denis Belomestny:
Variance Reduction for Policy-Gradient Methods via Empirical Variance Minimization. CoRR abs/2206.06827 (2022) - [i11]Denis Belomestny, Alexey Naumov, Nikita Puchkin, Sergey Samsonov:
Simultaneous approximation of a smooth function and its derivatives by deep neural networks with piecewise-polynomial activations. CoRR abs/2206.09527 (2022) - [i10]Daniil Tiapkin, Denis Belomestny, Daniele Calandriello, Eric Moulines, Rémi Munos, Alexey Naumov, Mark Rowland, Michal Valko, Pierre Ménard:
Optimistic Posterior Sampling for Reinforcement Learning with Few Samples and Tight Guarantees. CoRR abs/2209.14414 (2022) - [i9]Denis Belomestny, John Schoenmakers:
Primal-dual regression approach for Markov decision processes with general state and action space. CoRR abs/2210.00258 (2022) - 2021
- [j19]Denis Belomestny, Leonid Iosipoi, Eric Moulines, Alexey Naumov, Sergey Samsonov:
Variance Reduction for Dependent Sequences with Applications to Stochastic Gradient MCMC. SIAM/ASA J. Uncertain. Quantification 9(2): 507-535 (2021) - [j18]Denis Belomestny, Leonid Iosipoi:
Fourier transform MCMC, heavy-tailed distributions, and geometric ergodicity. Math. Comput. Simul. 181: 351-363 (2021) - [j17]Christian Bayer, Denis Belomestny, Paul Hager, Paolo Pigato, John Schoenmakers:
Randomized Optimal Stopping Algorithms and Their Convergence Analysis. SIAM J. Financial Math. 12(3): 1201-1225 (2021) - [i8]Denis Belomestny, Ilya Levin, Eric Moulines, Alexey Naumov, Sergey Samsonov, Veronika Zorina:
Model-free policy evaluation in Reinforcement Learning via upper solutions. CoRR abs/2105.02135 (2021) - [i7]Evgeny Lagutin, Daniil Selikhanovych, Achille Thin, Sergey Samsonov, Alexey Naumov, Denis Belomestny, Maxim Panov, Eric Moulines:
Ex2MCMC: Sampling through Exploration Exploitation. CoRR abs/2111.02702 (2021) - 2020
- [j16]Denis Belomestny, Leonid Iosipoi, Eric Moulines, Alexey Naumov, Sergey Samsonov:
Variance reduction for Markov chains with application to MCMC. Stat. Comput. 30(4): 973-997 (2020) - [j15]Denis Belomestny, John Schoenmakers:
Optimal Stopping of McKean-Vlasov Diffusions via Regression on Particle Systems. SIAM J. Control. Optim. 58(1): 529-550 (2020) - [i6]Christian Bayer, Denis Belomestny, Paul Hager, Paolo Pigato, John Schoenmakers:
Randomized optimal stopping algorithms and their convergence analysis. CoRR abs/2002.00816 (2020) - [i5]Christian Bayer, Denis Belomestny, Paul Hager, Paolo Pigato, John Schoenmakers, Vladimir G. Spokoiny:
Reinforced optimal control. CoRR abs/2011.12382 (2020)
2010 – 2019
- 2019
- [j14]Denis Belomestny, Tobias Hübner, Volker Krätschmer, Sascha Nolte:
Minimax theorems for American options without time-consistency. Finance Stochastics 23(1): 209-238 (2019) - [c4]Johannes Gauer, Ekaterina A. Krymova, Denis Belomestny, Rainer Martin:
Spectral Complexity Reduction of Music Signals for Cochlear Implant Users based on Subspace Tracking. EUSIPCO 2019: 1-5 - [i4]Denis Belomestny, Maxim Kaledin, John Schoenmakers:
Semi-tractability of optimal stopping problems via a weighted stochastic mesh algorithm. CoRR abs/1906.09431 (2019) - [i3]Denis Belomestny, Leonid Iosipoi:
Fourier transform MCMC, heavy tailed distributions and geometric ergodicity. CoRR abs/1909.00698 (2019) - [i2]Denis Belomestny, Lukasz Szpruch, Shuren Tan:
Iterative Multilevel density estimation for McKean-Vlasov SDEs via projections. CoRR abs/1909.11717 (2019) - [i1]Denis Belomestny, Leonid Iosipoi, Eric Moulines, Alexey Naumov, Sergey Samsonov:
Variance reduction for Markov chains with application to MCMC. CoRR abs/1910.03643 (2019) - 2018
- [j13]Denis Belomestny, Stefan Häfner, Mikhail Urusov:
Stratified regression-based variance reduction approach for weak approximation schemes. Math. Comput. Simul. 143: 125-137 (2018) - [j12]Denis Belomestny, Stefan Häfner, Mikhail Urusov:
Regression-Based Complexity Reduction of the Nested Monte Carlo Methods. SIAM J. Financial Math. 9(2): 665-689 (2018) - [j11]Denis Belomestny, John Schoenmakers:
Projected Particle Methods for Solving McKean-Vlasov Stochastic Differential Equations. SIAM J. Numer. Anal. 56(6): 3169-3195 (2018) - 2017
- [j10]Denis Belomestny, Volker Krätschmer:
Optimal Stopping Under Probability Distortions. Math. Oper. Res. 42(3): 806-833 (2017) - [c3]Ekaterina A. Krymova, Anil M. Nagathil, Denis Belomestny, Rainer Martin:
Segmentation of music signals based on explained variance ratio for applications in spectral complexity reduction. ICASSP 2017: 206-210 - 2015
- [j9]Denis Belomestny, Mark S. Joshi, John Schoenmakers:
Addendum to: Multilevel dual approach for pricing American style derivatives. Finance Stochastics 19(3): 681-684 (2015) - [j8]Denis Belomestny, Marcel Ladkau, John Schoenmakers:
Multilevel Simulation Based Policy Iteration for Optimal Stopping-Convergence and Complexity. SIAM/ASA J. Uncertain. Quantification 3(1): 460-483 (2015) - [j7]Denis Belomestny, Fabian Dickmann, Tigran Nagapetyan:
Pricing Bermudan Options via Multilevel Approximation Methods. SIAM J. Financial Math. 6(1): 448-466 (2015) - 2014
- [c2]Denis Belomestny, Nan Chen, Yiwei Wang:
Unbiased Simulation of Distributions with Explicitly Known Integral Transforms. MCQMC 2014: 229-244 - 2013
- [j6]Denis Belomestny, John Schoenmakers, Fabian Dickmann:
Multilevel dual approach for pricing American style derivatives. Finance Stochastics 17(4): 717-742 (2013) - 2012
- [j5]Denis Belomestny, Volker Krätschmer:
Central Limit Theorems for Law-Invariant Coherent Risk Measures. J. Appl. Probab. 49(1): 1-21 (2012) - [c1]Denis Belomestny, Marcel Ladkau, John Schoenmakers:
Tight bounds for American options via multilevel Monte Carlo. WSC 2012: 31:1-31:8 - 2011
- [j4]Denis Belomestny:
Pricing Bermudan options by nonparametric regression: optimal rates of convergence for lower estimates. Finance Stochastics 15(4): 655-683 (2011) - 2010
- [j3]Denis Belomestny, Anastasia Kolodko, John Schoenmakers:
Regression Methods for Stochastic Control Problems and Their Convergence Analysis. SIAM J. Control. Optim. 48(5): 3562-3588 (2010)
2000 – 2009
- 2009
- [j2]Denis Belomestny, Stanley Mathew, John Schoenmakers:
Multiple stochastic volatility extension of the Libor market model and its implementation. Monte Carlo Methods Appl. 15(4): 285-310 (2009) - 2006
- [j1]Denis Belomestny, Markus Reiß:
Spectral calibration of exponential Lévy models. Finance Stochastics 10(4): 449-474 (2006)
Coauthor Index
manage site settings
To protect your privacy, all features that rely on external API calls from your browser are turned off by default. You need to opt-in for them to become active. All settings here will be stored as cookies with your web browser. For more information see our F.A.Q.
Unpaywalled article links
Add open access links from to the list of external document links (if available).
Privacy notice: By enabling the option above, your browser will contact the API of unpaywall.org to load hyperlinks to open access articles. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Unpaywall privacy policy.
Archived links via Wayback Machine
For web page which are no longer available, try to retrieve content from the of the Internet Archive (if available).
Privacy notice: By enabling the option above, your browser will contact the API of archive.org to check for archived content of web pages that are no longer available. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Internet Archive privacy policy.
Reference lists
Add a list of references from , , and to record detail pages.
load references from crossref.org and opencitations.net
Privacy notice: By enabling the option above, your browser will contact the APIs of crossref.org, opencitations.net, and semanticscholar.org to load article reference information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Crossref privacy policy and the OpenCitations privacy policy, as well as the AI2 Privacy Policy covering Semantic Scholar.
Citation data
Add a list of citing articles from and to record detail pages.
load citations from opencitations.net
Privacy notice: By enabling the option above, your browser will contact the API of opencitations.net and semanticscholar.org to load citation information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the OpenCitations privacy policy as well as the AI2 Privacy Policy covering Semantic Scholar.
OpenAlex data
Load additional information about publications from .
Privacy notice: By enabling the option above, your browser will contact the API of openalex.org to load additional information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the information given by OpenAlex.
last updated on 2024-10-22 21:16 CEST by the dblp team
all metadata released as open data under CC0 1.0 license
see also: Terms of Use | Privacy Policy | Imprint