


Остановите войну!
for scientists:


default search action
Daniel M. Kane
Daniel Kane
Person information

- affiliation: University of California, San Diego, La Jolla, CA, USA
- affiliation (2011 - 2014): Stanford University, CA, USA
- affiliation (PhD 2011): Harvard University, Cambridge, MA, USA
- affiliation (former): Massachusetts Institute of Technology, Cambridge, MA, USA
Refine list

refinements active!
zoomed in on ?? of ?? records
view refined list in
export refined list as
showing all ?? records
2020 – today
- 2023
- [c111]Daniel Beaglehole, Max Hopkins, Daniel Kane, Sihan Liu, Shachar Lovett:
Sampling Equilibria: Fast No-Regret Learning in Structured Games. SODA 2023: 3817-3855 - [c110]Ilias Diakonikolas, Daniel M. Kane, Ankit Pensia:
Gaussian Mean Testing Made Simple. SOSA 2023: 348-352 - [c109]Ilias Diakonikolas, Christos Tzamos, Daniel M. Kane:
A Strongly Polynomial Algorithm for Approximate Forster Transforms and Its Application to Halfspace Learning. STOC 2023: 1741-1754 - [i132]Max Hopkins, Daniel M. Kane, Shachar Lovett, Gaurav Mahajan:
Do PAC-Learners Learn the Marginal Distribution? CoRR abs/2302.06285 (2023) - [i131]Ilias Diakonikolas, Daniel M. Kane, Lisheng Ren:
Near-Optimal Cryptographic Hardness of Agnostically Learning Halfspaces and ReLU Regression under Gaussian Marginals. CoRR abs/2302.06512 (2023) - [i130]Daniel Kane, Sihan Liu, Shachar Lovett, Gaurav Mahajan, Csaba Szepesvári, Gellért Weisz:
Exponential Hardness of Reinforcement Learning with Linear Function Approximation. CoRR abs/2302.12940 (2023) - [i129]Ilias Diakonikolas, Daniel M. Kane, Vasilis Kontonis, Sihan Liu, Nikos Zarifis:
Efficient Testable Learning of Halfspaces with Adversarial Label Noise. CoRR abs/2303.05485 (2023) - [i128]Ilias Diakonikolas, Daniel M. Kane, Jasper C. H. Lee, Ankit Pensia, Thanasis Pittas:
A Spectral Algorithm for List-Decodable Covariance Estimation in Relative Frobenius Norm. CoRR abs/2305.00966 (2023) - [i127]Ilias Diakonikolas, Daniel M. Kane, Ankit Pensia, Thanasis Pittas:
Nearly-Linear Time and Streaming Algorithms for Outlier-Robust PCA. CoRR abs/2305.02544 (2023) - 2022
- [j21]Venkata Gandikota
, Daniel Kane, Raj Kumar Maity
, Arya Mazumdar
:
vqSGD: Vector Quantized Stochastic Gradient Descent. IEEE Trans. Inf. Theory 68(7): 4573-4587 (2022) - [c108]Ilias Diakonikolas, Daniel Kane, Pasin Manurangsi, Lisheng Ren:
Hardness of Learning a Single Neuron with Adversarial Label Noise. AISTATS 2022: 8199-8213 - [c107]Alaa Maalouf, Murad Tukan, Eric Price, Daniel M. Kane, Dan Feldman:
Coresets for Data Discretization and Sine Wave Fitting. AISTATS 2022: 10622-10639 - [c106]Daniel Kane, Sihan Liu, Shachar Lovett, Gaurav Mahajan:
Computational-Statistical Gap in Reinforcement Learning. COLT 2022: 1282-1302 - [c105]Max Hopkins, Daniel M. Kane, Shachar Lovett, Gaurav Mahajan:
Realizable Learning is All You Need. COLT 2022: 3015-3069 - [c104]Ilias Diakonikolas, Daniel M. Kane, Yuxin Sun:
Optimal SQ Lower Bounds for Robustly Learning Discrete Product Distributions and Ising Models. COLT 2022: 3936-3978 - [c103]Ilias Diakonikolas, Daniel Kane:
Near-Optimal Statistical Query Hardness of Learning Halfspaces with Massart Noise. COLT 2022: 4258-4282 - [c102]Ilias Diakonikolas, Daniel Kane:
Non-Gaussian Component Analysis via Lattice Basis Reduction. COLT 2022: 4535-4547 - [c101]Ilias Diakonikolas, Daniel M. Kane, Sushrut Karmalkar, Ankit Pensia, Thanasis Pittas:
Robust Sparse Mean Estimation via Sum of Squares. COLT 2022: 4703-4763 - [c100]Ilias Diakonikolas, Daniel M. Kane, Ankit Pensia, Thanasis Pittas:
Streaming Algorithms for High-Dimensional Robust Statistics. ICML 2022: 5061-5117 - [c99]Yu Cheng, Ilias Diakonikolas, Rong Ge, Shivam Gupta, Daniel Kane, Mahdi Soltanolkotabi:
Outlier-Robust Sparse Estimation via Non-Convex Optimization. NeurIPS 2022 - [c98]Clément L. Canonne, Ilias Diakonikolas, Daniel Kane, Sihan Liu:
Nearly-Tight Bounds for Testing Histogram Distributions. NeurIPS 2022 - [c97]Ilias Diakonikolas, Daniel Kane, Sushrut Karmalkar, Ankit Pensia, Thanasis Pittas:
List-Decodable Sparse Mean Estimation via Difference-of-Pairs Filtering. NeurIPS 2022 - [c96]Ilias Diakonikolas, Daniel Kane, Jasper C. H. Lee, Ankit Pensia:
Outlier-Robust Sparse Mean Estimation for Heavy-Tailed Distributions. NeurIPS 2022 - [c95]Ilias Diakonikolas, Daniel Kane, Pasin Manurangsi, Lisheng Ren:
Cryptographic Hardness of Learning Halfspaces with Massart Noise. NeurIPS 2022 - [c94]Ilias Diakonikolas, Daniel Kane, Lisheng Ren, Yuxin Sun:
SQ Lower Bounds for Learning Single Neurons with Massart Noise. NeurIPS 2022 - [c93]Ilias Diakonikolas, Daniel M. Kane, Vasilis Kontonis, Christos Tzamos, Nikos Zarifis:
Learning general halfspaces with general Massart noise under the Gaussian distribution. STOC 2022: 874-885 - [c92]Ainesh Bakshi, Ilias Diakonikolas, He Jia, Daniel M. Kane, Pravesh K. Kothari, Santosh S. Vempala:
Robustly learning mixtures of k arbitrary Gaussians. STOC 2022: 1234-1247 - [c91]Ilias Diakonikolas, Daniel M. Kane, Daniel Kongsgaard, Jerry Li, Kevin Tian:
Clustering mixture models in almost-linear time via list-decodable mean estimation. STOC 2022: 1262-1275 - [i126]Daniel Kane, Sihan Liu, Shachar Lovett, Gaurav Mahajan:
Computational-Statistical Gaps in Reinforcement Learning. CoRR abs/2202.05444 (2022) - [i125]Alaa Maalouf, Murad Tukan, Eric Price, Daniel Kane, Dan Feldman:
Coresets for Data Discretization and Sine Wave Fitting. CoRR abs/2203.03009 (2022) - [i124]Ilias Diakonikolas, Daniel M. Kane, Ankit Pensia, Thanasis Pittas:
Streaming Algorithms for High-Dimensional Robust Statistics. CoRR abs/2204.12399 (2022) - [i123]Ilias Diakonikolas, Daniel M. Kane, Sushrut Karmalkar, Ankit Pensia, Thanasis Pittas:
Robust Sparse Mean Estimation via Sum of Squares. CoRR abs/2206.03441 (2022) - [i122]Ilias Diakonikolas, Daniel M. Kane, Yuxin Sun:
Optimal SQ Lower Bounds for Robustly Learning Discrete Product Distributions and Ising Models. CoRR abs/2206.04589 (2022) - [i121]Ilias Diakonikolas, Daniel M. Kane, Sushrut Karmalkar, Ankit Pensia, Thanasis Pittas:
List-Decodable Sparse Mean Estimation via Difference-of-Pairs Filtering. CoRR abs/2206.05245 (2022) - [i120]Clément L. Canonne, Ilias Diakonikolas, Daniel M. Kane, Sihan Liu:
Near-Optimal Bounds for Testing Histogram Distributions. CoRR abs/2207.06596 (2022) - [i119]Ilias Diakonikolas, Daniel M. Kane, Pasin Manurangsi, Lisheng Ren:
Cryptographic Hardness of Learning Halfspaces with Massart Noise. CoRR abs/2207.14266 (2022) - [i118]Ilias Diakonikolas, Daniel M. Kane, Lisheng Ren, Yuxin Sun:
SQ Lower Bounds for Learning Single Neurons with Massart Noise. CoRR abs/2210.09949 (2022) - [i117]Ilias Diakonikolas, Daniel M. Kane, Ankit Pensia:
Gaussian Mean Testing Made Simple. CoRR abs/2210.13706 (2022) - [i116]Ilias Diakonikolas, Daniel M. Kane, Jasper C. H. Lee, Ankit Pensia:
Outlier-Robust Sparse Mean Estimation for Heavy-Tailed Distributions. CoRR abs/2211.16333 (2022) - [i115]Ilias Diakonikolas, Christos Tzamos, Daniel M. Kane:
A Strongly Polynomial Algorithm for Approximate Forster Transforms and its Application to Halfspace Learning. CoRR abs/2212.03008 (2022) - [i114]Daniel M. Kane, Ilias Diakonikolas:
A Nearly Tight Bound for Fitting an Ellipsoid to Gaussian Random Points. CoRR abs/2212.11221 (2022) - [i113]Ilias Diakonikolas, Christos Tzamos, Daniel Kane:
A Strongly Polynomial Algorithm for Approximate Forster Transforms and its Application to Halfspace Learning. Electron. Colloquium Comput. Complex. TR22 (2022) - 2021
- [j20]Ilias Diakonikolas, Gautam Kamath, Daniel M. Kane, Jerry Li, Ankur Moitra, Alistair Stewart:
Robustness meets algorithms. Commun. ACM 64(5): 107-115 (2021) - [j19]Daniel M. Kane, Scott Duke Kominers:
Prisoners, Rooms, and Light Switches. Electron. J. Comb. 28(1): 1 (2021) - [c90]Venkata Gandikota, Daniel Kane, Raj Kumar Maity, Arya Mazumdar:
vqSGD: Vector Quantized Stochastic Gradient Descent. AISTATS 2021: 2197-2205 - [c89]Ilias Diakonikolas, Daniel M. Kane:
The Sample Complexity of Robust Covariance Testing. COLT 2021: 1511-1521 - [c88]Ilias Diakonikolas, Daniel M. Kane, Vasilis Kontonis, Christos Tzamos, Nikos Zarifis:
Agnostic Proper Learning of Halfspaces under Gaussian Marginals. COLT 2021: 1522-1551 - [c87]Ilias Diakonikolas, Daniel M. Kane, Thanasis Pittas, Nikos Zarifis:
The Optimality of Polynomial Regression for Agnostic Learning under Gaussian Marginals in the SQ Model. COLT 2021: 1552-1584 - [c86]Ilias Diakonikolas, Russell Impagliazzo, Daniel M. Kane, Rex Lei, Jessica Sorrell, Christos Tzamos:
Boosting in the Presence of Massart Noise. COLT 2021: 1585-1644 - [c85]Ilias Diakonikolas, Daniel M. Kane, Alistair Stewart, Yuxin Sun:
Outlier-Robust Learning of Ising Models Under Dobrushin's Condition. COLT 2021: 1645-1682 - [c84]Max Hopkins, Daniel Kane, Shachar Lovett, Michal Moshkovitz:
Bounded Memory Active Learning through Enriched Queries. COLT 2021: 2358-2387 - [c83]Yuval Dagan, Yuval Filmus, Daniel Kane, Shay Moran:
The Entropy of Lies: Playing Twenty Questions with a Liar. ITCS 2021: 1:1-1:16 - [c82]Ilias Diakonikolas, Daniel Kane, Ankit Pensia, Thanasis Pittas, Alistair Stewart:
Statistical Query Lower Bounds for List-Decodable Linear Regression. NeurIPS 2021: 3191-3204 - [c81]Ilias Diakonikolas, Daniel Kane, Christos Tzamos:
Forster Decomposition and Learning Halfspaces with Noise. NeurIPS 2021: 7732-7744 - [c80]Ilias Diakonikolas, Daniel Kane, Daniel Kongsgaard, Jerry Li, Kevin Tian:
List-Decodable Mean Estimation in Nearly-PCA Time. NeurIPS 2021: 10195-10208 - [c79]Daniel M. Kane:
Robust Learning of Mixtures of Gaussians. SODA 2021: 1246-1258 - [c78]Ilias Diakonikolas, Daniel M. Kane, Vasilis Kontonis, Christos Tzamos, Nikos Zarifis:
Efficiently learning halfspaces with Tsybakov noise. STOC 2021: 88-101 - [c77]Ilias Diakonikolas, Themis Gouleakis, Daniel M. Kane, John Peebles, Eric Price:
Optimal testing of discrete distributions with high probability. STOC 2021: 542-555 - [i112]Daniel Kane, Andreas Fackler, Adam Gagol, Damian Straszak:
Highway: Efficient Consensus with Flexible Finality. CoRR abs/2101.02159 (2021) - [i111]Ilias Diakonikolas, Daniel M. Kane, Alistair Stewart, Yuxin Sun:
Outlier-Robust Learning of Ising Models Under Dobrushin's Condition. CoRR abs/2102.02171 (2021) - [i110]Ilias Diakonikolas, Daniel M. Kane, Thanasis Pittas, Nikos Zarifis:
The Optimality of Polynomial Regression for Agnostic Learning under Gaussian Marginals. CoRR abs/2102.04401 (2021) - [i109]Max Hopkins, Daniel Kane, Shachar Lovett, Michal Moshkovitz:
Bounded Memory Active Learning through Enriched Queries. CoRR abs/2102.05047 (2021) - [i108]Ilias Diakonikolas, Daniel M. Kane, Vasilis Kontonis, Christos Tzamos, Nikos Zarifis:
Agnostic Proper Learning of Halfspaces under Gaussian Marginals. CoRR abs/2102.05629 (2021) - [i107]Ryan O'Donnell, Rocco A. Servedio, Li-Yang Tan, Daniel Kane:
Fooling Gaussian PTFs via Local Hyperconcentration. CoRR abs/2103.07809 (2021) - [i106]Ilias Diakonikolas, Russell Impagliazzo, Daniel Kane, Rex Lei, Jessica Sorrell, Christos Tzamos:
Boosting in the Presence of Massart Noise. CoRR abs/2106.07779 (2021) - [i105]Ilias Diakonikolas, Daniel M. Kane, Daniel Kongsgaard, Jerry Li, Kevin Tian:
Clustering Mixture Models in Almost-Linear Time via List-Decodable Mean Estimation. CoRR abs/2106.08537 (2021) - [i104]Ilias Diakonikolas, Daniel M. Kane, Ankit Pensia, Thanasis Pittas, Alistair Stewart:
Statistical Query Lower Bounds for List-Decodable Linear Regression. CoRR abs/2106.09689 (2021) - [i103]Ilias Diakonikolas, Daniel M. Kane, Christos Tzamos:
Forster Decomposition and Learning Halfspaces with Noise. CoRR abs/2107.05582 (2021) - [i102]Ilias Diakonikolas, Daniel M. Kane, Vasilis Kontonis, Christos Tzamos, Nikos Zarifis:
Threshold Phenomena in Learning Halfspaces with Massart Noise. CoRR abs/2108.08767 (2021) - [i101]Yu Cheng, Ilias Diakonikolas, Daniel M. Kane, Rong Ge, Shivam Gupta, Mahdi Soltanolkotabi:
Outlier-Robust Sparse Estimation via Non-Convex Optimization. CoRR abs/2109.11515 (2021) - [i100]Daniel M. Kane, Shahed Sharif, Alice Silverberg:
Quantum Money from Quaternion Algebras. CoRR abs/2109.12643 (2021) - [i99]Max Hopkins, Daniel Kane, Shachar Lovett, Gaurav Mahajan:
Realizable Learning is All You Need. CoRR abs/2111.04746 (2021) - [i98]Ilias Diakonikolas, Daniel M. Kane:
Non-Gaussian Component Analysis via Lattice Basis Reduction. CoRR abs/2112.09104 (2021) - [i97]Daniel M. Kane, Shahed Sharif, Alice Silverberg:
Quantum Money from Quaternion Algebras. IACR Cryptol. ePrint Arch. 2021: 1294 (2021) - 2020
- [j18]Clément L. Canonne
, Ilias Diakonikolas, Daniel M. Kane, Alistair Stewart:
Testing Bayesian Networks. IEEE Trans. Inf. Theory 66(5): 3132-3170 (2020) - [c76]Ilias Diakonikolas, Daniel M. Kane, Vasilis Kontonis, Nikos Zarifis:
Algorithms and SQ Lower Bounds for PAC Learning One-Hidden-Layer ReLU Networks. COLT 2020: 1514-1539 - [c75]Max Hopkins, Daniel Kane, Shachar Lovett, Gaurav Mahajan:
Noise-tolerant, Reliable Active Classification with Comparison Queries. COLT 2020: 1957-2006 - [c74]Ainesh Bakshi, Ilias Diakonikolas, Samuel B. Hopkins, Daniel Kane, Sushrut Karmalkar, Pravesh K. Kothari:
Outlier-Robust Clustering of Gaussians and Other Non-Spherical Mixtures. FOCS 2020: 149-159 - [c73]Ilias Diakonikolas, Daniel M. Kane:
Small Covers for Near-Zero Sets of Polynomials and Learning Latent Variable Models. FOCS 2020: 184-195 - [c72]Max Hopkins, Daniel Kane, Shachar Lovett, Gaurav Mahajan:
Point Location and Active Learning: Learning Halfspaces Almost Optimally. FOCS 2020: 1034-1044 - [c71]Ilias Diakonikolas, Daniel Kane, Daniel Kongsgaard:
List-Decodable Mean Estimation via Iterative Multi-Filtering. NeurIPS 2020 - [c70]Ilias Diakonikolas, Daniel M. Kane, Pasin Manurangsi:
The Complexity of Adversarially Robust Proper Learning of Halfspaces with Agnostic Noise. NeurIPS 2020 - [c69]Ilias Diakonikolas, Daniel M. Kane, Ankit Pensia:
Outlier Robust Mean Estimation with Subgaussian Rates via Stability. NeurIPS 2020 - [c68]Ilias Diakonikolas, Daniel Kane, Nikos Zarifis:
Near-Optimal SQ Lower Bounds for Agnostically Learning Halfspaces and ReLUs under Gaussian Marginals. NeurIPS 2020 - [c67]Max Hopkins, Daniel Kane, Shachar Lovett:
The Power of Comparisons for Actively Learning Linear Classifiers. NeurIPS 2020 - [p1]Ilias Diakonikolas, Daniel M. Kane:
Robust High-Dimensional Statistics. Beyond the Worst-Case Analysis of Algorithms 2020: 382-402 - [i96]Max Hopkins, Daniel Kane, Shachar Lovett, Gaurav Mahajan:
Noise-tolerant, Reliable Active Classification with Comparison Queries. CoRR abs/2001.05497 (2020) - [i95]Max Hopkins, Daniel M. Kane, Shachar Lovett, Gaurav Mahajan:
Point Location and Active Learning: Learning Halfspaces Almost Optimally. CoRR abs/2004.11380 (2020) - [i94]Ilias Diakonikolas, Samuel B. Hopkins, Daniel Kane, Sushrut Karmalkar:
Robustly Learning any Clusterable Mixture of Gaussians. CoRR abs/2005.06417 (2020) - [i93]Ilias Diakonikolas, Daniel M. Kane, Daniel Kongsgaard:
List-Decodable Mean Estimation via Iterative Multi-Filtering. CoRR abs/2006.10715 (2020) - [i92]Ilias Diakonikolas, Daniel M. Kane, Vasilis Kontonis, Nikos Zarifis:
Algorithms and SQ Lower Bounds for PAC Learning One-Hidden-Layer ReLU Networks. CoRR abs/2006.12476 (2020) - [i91]Ilias Diakonikolas, Daniel M. Kane, Nikos Zarifis:
Near-Optimal SQ Lower Bounds for Agnostically Learning Halfspaces and ReLUs under Gaussian Marginals. CoRR abs/2006.16200 (2020) - [i90]Daniel M. Kane:
Robust Learning of Mixtures of Gaussians. CoRR abs/2007.05912 (2020) - [i89]Ilias Diakonikolas, Daniel M. Kane, Pasin Manurangsi:
The Complexity of Adversarially Robust Proper Learning of Halfspaces with Agnostic Noise. CoRR abs/2007.15220 (2020) - [i88]Ilias Diakonikolas, Daniel M. Kane, Ankit Pensia:
Outlier Robust Mean Estimation with Subgaussian Rates via Stability. CoRR abs/2007.15618 (2020) - [i87]Ilias Diakonikolas, Themis Gouleakis, Daniel M. Kane, John Peebles, Eric Price:
Optimal Testing of Discrete Distributions with High Probability. CoRR abs/2009.06540 (2020) - [i86]Daniel M. Kane, Scott Duke Kominers:
Prisoners, Rooms, and Lightswitches. CoRR abs/2009.08575 (2020) - [i85]Ilias Diakonikolas, Daniel M. Kane, Vasilis Kontonis, Christos Tzamos, Nikos Zarifis:
A Polynomial Time Algorithm for Learning Halfspaces with Tsybakov Noise. CoRR abs/2010.01705 (2020) - [i84]Ilias Diakonikolas, Daniel M. Kane, Daniel Kongsgaard, Jerry Li, Kevin Tian:
List-Decodable Mean Estimation in Nearly-PCA Time. CoRR abs/2011.09973 (2020) - [i83]Ainesh Bakshi, Ilias Diakonikolas, He Jia, Daniel M. Kane, Pravesh K. Kothari, Santosh S. Vempala:
Robustly Learning Mixtures of k Arbitrary Gaussians. CoRR abs/2012.02119 (2020) - [i82]Ilias Diakonikolas, Daniel M. Kane:
Small Covers for Near-Zero Sets of Polynomials and Learning Latent Variable Models. CoRR abs/2012.07774 (2020) - [i81]Ilias Diakonikolas, Daniel M. Kane:
Hardness of Learning Halfspaces with Massart Noise. CoRR abs/2012.09720 (2020) - [i80]Ilias Diakonikolas, Daniel M. Kane:
The Sample Complexity of Robust Covariance Testing. CoRR abs/2012.15802 (2020) - [i79]Ilias Diakonikolas, Themis Gouleakis, Daniel Kane, John Peebles, Eric Price:
Optimal Testing of Discrete Distributions with High Probability. Electron. Colloquium Comput. Complex. TR20 (2020)
2010 – 2019
- 2019
- [j17]Daniel M. Kane, Carlo Sanna
, Jeffrey O. Shallit:
Waring's Theorem for Binary Powers. Comb. 39(6): 1335-1350 (2019) - [j16]Daniel M. Kane, Shachar Lovett
, Shay Moran:
Near-optimal Linear Decision Trees for k-SUM and Related Problems. J. ACM 66(3): 16:1-16:18 (2019) - [j15]Ilias Diakonikolas, Gautam Kamath, Daniel Kane, Jerry Li, Ankur Moitra, Alistair Stewart:
Robust Estimators in High-Dimensions Without the Computational Intractability. SIAM J. Comput. 48(2): 742-864 (2019) - [j14]Daniel Kane, Shachar Lovett, Sankeerth Rao
:
The Independence Number of the Birkhoff Polytope Graph, and Applications to Maximally Recoverable Codes. SIAM J. Comput. 48(4): 1425-1435 (2019) - [j13]Ilgweon Kang
, Fang Qiao, Dongwon Park, Daniel Kane, Evangeline F. Y. Young, Chung-Kuan Cheng, Ronald L. Graham:
Three-dimensional Floorplan Representations by Using Corner Links and Partial Order. ACM Trans. Design Autom. Electr. Syst. 24(1): 13:1-13:33 (2019) - [c66]Olivier Bousquet, Daniel Kane, Shay Moran:
The Optimal Approximation Factor in Density Estimation. COLT 2019: 318-341 - [c65]Ilias Diakonikolas, Themis Gouleakis, Daniel M. Kane, Sankeerth Rao:
Communication and Memory Efficient Testing of Discrete Distributions. COLT 2019: 1070-1106 - [c64]Ilias Diakonikolas, Daniel M. Kane, John Peebles:
Testing Identity of Multidimensional Histograms. COLT 2019: 1107-1131 - [c63]Surbhi Goel, Daniel M. Kane, Adam R. Klivans:
Learning Ising Models with Independent Failures. COLT 2019: 1449-1469 - [c62]Daniel Kane, Roi Livni, Shay Moran, Amir Yehudayoff:
On Communication Complexity of Classification Problems. COLT 2019: 1903-1943 - [c61]Ilias Diakonikolas, Gautam Kamath, Daniel Kane, Jerry Li, Jacob Steinhardt, Alistair Stewart:
Sever: A Robust Meta-Algorithm for Stochastic Optimization. ICML 2019: 1596-1606 - [c60]Daniel M. Kane, Richard Ryan Williams:
The Orthogonal Vectors Conjecture for Branching Programs and Formulas. ITCS 2019: 48:1-48:15 - [c59]Ilias Diakonikolas, Daniel Kane, Pasin Manurangsi:
Nearly Tight Bounds for Robust Proper Learning of Halfspaces with a Margin. NeurIPS 2019: 10473-10484 - [c58]Ilias Diakonikolas, Daniel Kane, Sushrut Karmalkar, Eric Price, Alistair Stewart:
Outlier-Robust High-Dimensional Sparse Estimation via Iterative Filtering. NeurIPS 2019: 10688-10699 - [c57]Maryam Aliakbarpour, Ilias Diakonikolas, Daniel Kane, Ronitt Rubinfeld:
Private Testing of Distributions via Sample Permutations. NeurIPS 2019: 10877-10888 - [c56]Ilias Diakonikolas, Daniel M. Kane:
Degree-푑 chow parameters robustly determine degree-푑 PTFs (and algorithmic applications). STOC 2019: 804-815 - [i78]Surbhi Goel, Daniel M. Kane, Adam R. Klivans:
Learning Ising Models with Independent Failures. CoRR abs/1902.04728 (2019) - [i77]Olivier Bousquet, Daniel Kane, Shay Moran:
The Optimal Approximation Factor in Density Estimation. CoRR abs/1902.05876 (2019) - [i76]