default search action
Daniel Neider
Person information
- affiliation: TU Dortmund University, Germany
- affiliation (former): Carl von Ossietzky University, Oldenburg, Germany
- affiliation (former): Max Planck Institute for Software Systems, Kaiserslautern, Germany
Refine list
refinements active!
zoomed in on ?? of ?? records
view refined list in
export refined list as
showing all ?? records
2020 – today
- 2024
- [j14]Ritam Raha, Rajarshi Roy, Nathanaël Fijalkow, Daniel Neider:
Scarlet: Scalable Anytime Algorithms for Learning Fragments of Linear Temporal Logic. J. Open Source Softw. 9(93): 5052 (2024) - [j13]Lina Ye, Igor Khmelnitsky, Serge Haddad, Benoît Barbot, Benedikt Bollig, Martin Leucker, Daniel Neider, Rajarshi Roy:
Analyzing Robustness of Angluin's L$^*$ Algorithm in Presence of Noise. Log. Methods Comput. Sci. 20(1) (2024) - [c62]Jan Corazza, Hadi Partovi Aria, Daniel Neider, Zhe Xu:
Expediting Reinforcement Learning by Incorporating Knowledge About Temporal Causality in the Environment. CLeaR 2024: 643-664 - [c61]Lukas Westhofen, Christian Neurohr, Jean Christoph Jung, Daniel Neider:
Topllet: An Optimized Engine for Answering Metric Temporal Conjunctive Queries. NFM 2024: 314-321 - [c60]Lukas Westhofen, Christian Neurohr, Jean Christoph Jung, Daniel Neider:
Answering Temporal Conjunctive Queries over Description Logic Ontologies for Situation Recognition in Complex Operational Domains. TACAS (1) 2024: 167-187 - [c59]Ritam Raha, Rajarshi Roy, Nathanaël Fijalkow, Daniel Neider, Guillermo A. Pérez:
Synthesizing Efficiently Monitorable Formulas in Metric Temporal Logic. VMCAI (2) 2024: 264-288 - [i45]Shayan Meshkat Alsadat, Jean-Raphaël Gaglione, Daniel Neider, Ufuk Topcu, Zhe Xu:
Using Large Language Models to Automate and Expedite Reinforcement Learning with Reward Machine. CoRR abs/2402.07069 (2024) - [i44]Faried Abu Zaid, Daniel Neider, Mustafa Yalçiner:
VeriFlow: Modeling Distributions for Neural Network Verification. CoRR abs/2406.14265 (2024) - [i43]Benjamin Bordais, Daniel Neider, Rajarshi Roy:
Learning Branching-Time Properties in CTL and ATL via Constraint Solving. CoRR abs/2406.19890 (2024) - [i42]Benjamin Bordais, Daniel Neider, Rajarshi Roy:
The Complexity of Learning Temporal Properties. CoRR abs/2408.04486 (2024) - 2023
- [j12]Igor Khmelnitsky, Daniel Neider, Rajarshi Roy, Xuan Xie, Benoît Barbot, Benedikt Bollig, Alain Finkel, Serge Haddad, Martin Leucker, Lina Ye:
Analysis of recurrent neural networks via property-directed verification of surrogate models. Int. J. Softw. Tools Technol. Transf. 25(3): 341-354 (2023) - [c58]Rajarshi Roy, Jean-Raphaël Gaglione, Nasim Baharisangari, Daniel Neider, Zhe Xu, Ufuk Topcu:
Learning Interpretable Temporal Properties from Positive Examples Only. AAAI 2023: 6507-6515 - [c57]Simon Lutz, Daniel Neider, Rajarshi Roy:
Specification Sketching for Linear Temporal Logic. ATVA 2023: 26-48 - [c56]Yash Paliwal, Rajarshi Roy, Jean-Raphaël Gaglione, Nasim Baharisangari, Daniel Neider, Xiaoming Duan, Ufuk Topcu, Zhe Xu:
Reinforcement Learning with Temporal-Logic-Based Causal Diagrams. CD-MAKE 2023: 123-140 - [c55]Aniello Murano, Daniel Neider, Martin Zimmermann:
Robust Alternating-Time Temporal Logic. JELIA 2023: 796-813 - [c54]Daniel Neider, Taylor T. Johnson:
Track C1: Safety Verification of Deep Neural Networks (DNNs). AISoLA 2023: 217-224 - [i41]Fabian Hartung, Billy Joe Franks, Tobias Michels, Dennis Wagner, Philipp Liznerski, Steffen Reithermann, Sophie Fellenz, Fabian Jirasek, Maja Rudolph, Daniel Neider, Heike Leitte, Chen Song, Benjamin Klöpper, Stephan Mandt, Michael Bortz, Jakob Burger, Hans Hasse, Marius Kloft:
Deep Anomaly Detection on Tennessee Eastman Process Data. CoRR abs/2303.05904 (2023) - [i40]Simon Lutz, Florian Wittbold, Simon Dierl, Benedikt Böing, Falk Howar, Barbara König, Emmanuel Müller, Daniel Neider:
Interpretable Anomaly Detection via Discrete Optimization. CoRR abs/2303.14111 (2023) - [i39]Lina Ye, Igor Khmelnitsky, Serge Haddad, Benoît Barbot, Benedikt Bollig, Martin Leucker, Daniel Neider, Rajarshi Roy:
Analyzing Robustness of Angluin's L* Algorithm in Presence of Noise. CoRR abs/2306.08266 (2023) - [i38]Yash Paliwal, Rajarshi Roy, Jean-Raphaël Gaglione, Nasim Baharisangari, Daniel Neider, Xiaoming Duan, Ufuk Topcu, Zhe Xu:
Reinforcement Learning with Temporal-Logic-Based Causal Diagrams. CoRR abs/2306.13732 (2023) - [i37]Aniello Murano, Daniel Neider, Martin Zimmermann:
Robust Alternating-Time Temporal Logic. CoRR abs/2307.10885 (2023) - [i36]Dominik Hintersdorf, Lukas Struppek, Daniel Neider, Kristian Kersting:
Defending Our Privacy With Backdoors. CoRR abs/2310.08320 (2023) - [i35]Rajarshi Roy, Daniel Neider:
Inferring Properties in Computation Tree Logic. CoRR abs/2310.13778 (2023) - [i34]Ritam Raha, Rajarshi Roy, Nathanaël Fijalkow, Daniel Neider, Guillermo A. Pérez:
Synthesizing Efficiently Monitorable Formulas in Metric Temporal Logic. CoRR abs/2310.17410 (2023) - [i33]Benjamin Bordais, Daniel Neider, Rajarshi Roy:
Learning Temporal Properties is NP-hard. CoRR abs/2312.11403 (2023) - 2022
- [j11]Daniel Neider, Alexander Weinert, Martin Zimmermann:
Robust, expressive, and quantitative linear temporal logics: Pick any two for free. Inf. Comput. 285(Part): 104810 (2022) - [j10]Jean-Raphaël Gaglione, Daniel Neider, Rajarshi Roy, Ufuk Topcu, Zhe Xu:
MaxSAT-based temporal logic inference from noisy data. Innov. Syst. Softw. Eng. 18(3): 427-442 (2022) - [j9]Tzanis Anevlavis, Matthew Philippe, Daniel Neider, Paulo Tabuada:
Being Correct Is Not Enough: Efficient Verification Using Robust Linear Temporal Logic. ACM Trans. Comput. Log. 23(2): 8:1-8:39 (2022) - [c53]Jan Corazza, Ivan Gavran, Daniel Neider:
Reinforcement Learning with Stochastic Reward Machines. AAAI 2022: 6429-6436 - [c52]Benedikt Bollig, Martin Leucker, Daniel Neider:
A Survey of Model Learning Techniques for Recurrent Neural Networks. A Journey from Process Algebra via Timed Automata to Model Learning 2022: 81-97 - [c51]Lukas Struppek, Dominik Hintersdorf, Daniel Neider, Kristian Kersting:
Learning to Break Deep Perceptual Hashing: The Use Case NeuralHash. FAccT 2022: 58-69 - [c50]Xuan Xie, Kristian Kersting, Daniel Neider:
Neuro-Symbolic Verification of Deep Neural Networks. IJCAI 2022: 3622-3628 - [c49]Satya Prakash Nayak, Daniel Neider, Martin Zimmermann:
Robustness-by-Construction Synthesis: Adapting to the Environment at Runtime. ISoLA (1) 2022: 149-173 - [c48]Satya Prakash Nayak, Daniel Neider, Rajarshi Roy, Martin Zimmermann:
Robust Computation Tree Logic. NFM 2022: 538-556 - [c47]Daniel Neider, Rajarshi Roy:
Expanding the Horizon of Linear Temporal Logic Inference for Explainability. RE Workshops 2022: 103-107 - [c46]Ritam Raha, Rajarshi Roy, Nathanaël Fijalkow, Daniel Neider:
Scalable Anytime Algorithms for Learning Fragments of Linear Temporal Logic. TACAS (1) 2022: 263-280 - [c45]Igor Khmelnitsky, Serge Haddad, Lina Ye, Benoît Barbot, Benedikt Bollig, Martin Leucker, Daniel Neider, Rajarshi Roy:
Analyzing Robustness of Angluin's L* Algorithm in Presence of Noise. GandALF 2022: 81-96 - [i32]Satya Prakash Nayak, Daniel Neider, Rajarshi Roy, Martin Zimmermann:
Robust Computation Tree Logic. CoRR abs/2201.07116 (2022) - [i31]Xuan Xie, Kristian Kersting, Daniel Neider:
Neuro-Symbolic Verification of Deep Neural Networks. CoRR abs/2203.00938 (2022) - [i30]Satya Prakash Nayak, Daniel Neider, Martin Zimmermann:
Robustness-by-Construction Synthesis: Adapting to the Environment at Runtime. CoRR abs/2204.10912 (2022) - [i29]Simon Lutz, Daniel Neider, Rajarshi Roy:
Specification sketching for Linear Temporal Logic. CoRR abs/2206.06722 (2022) - [i28]Rajarshi Roy, Jean-Raphaël Gaglione, Nasim Baharisangari, Daniel Neider, Zhe Xu, Ufuk Topcu:
Learning Interpretable Temporal Properties from Positive Examples Only. CoRR abs/2209.02650 (2022) - [i27]Jean-Raphaël Gaglione, Rajarshi Roy, Nasim Baharisangari, Daniel Neider, Zhe Xu, Ufuk Topcu:
Learning Temporal Logic Properties: an Overview of Two Recent Methods. CoRR abs/2212.00916 (2022) - 2021
- [j8]Corto Mascle, Daniel Neider, Maximilian Schwenger, Paulo Tabuada, Alexander Weinert, Martin Zimmermann:
From LTL to rLTL monitoring: improved monitorability through robust semantics. Formal Methods Syst. Des. 59(1): 170-204 (2021) - [c44]Daniel Neider, Jean-Raphaël Gaglione, Ivan Gavran, Ufuk Topcu, Bo Wu, Zhe Xu:
Advice-Guided Reinforcement Learning in a non-Markovian Environment. AAAI 2021: 9073-9080 - [c43]Jean-Raphaël Gaglione, Daniel Neider, Rajarshi Roy, Ufuk Topcu, Zhe Xu:
Learning Linear Temporal Properties from Noisy Data: A MaxSAT-Based Approach. ATVA 2021: 74-90 - [c42]Igor Khmelnitsky, Daniel Neider, Rajarshi Roy, Xuan Xie, Benoît Barbot, Benedikt Bollig, Alain Finkel, Serge Haddad, Martin Leucker, Lina Ye:
Property-Directed Verification and Robustness Certification of Recurrent Neural Networks. ATVA 2021: 364-380 - [c41]Zhe Xu, Bo Wu, Aditya Ojha, Daniel Neider, Ufuk Topcu:
Active Finite Reward Automaton Inference and Reinforcement Learning Using Queries and Counterexamples. CD-MAKE 2021: 115-135 - [c40]Benedikt Böing, Rajarshi Roy, Daniel Neider, Emmanuel Müller:
QUGA - Quality Guarantees for Autoencoders. OVERLAY@GandALF 2021: 103-107 - [c39]Satya Prakash Nayak, Daniel Neider, Martin Zimmermann:
Adaptive strategies for rLTL games. HSCC 2021: 32:1-32:2 - [c38]Benoît Barbot, Benedikt Bollig, Alain Finkel, Serge Haddad, Igor Khmelnitsky, Martin Leucker, Daniel Neider, Rajarshi Roy, Lina Ye:
Extracting Context-Free Grammars from Recurrent Neural Networks using Tree-Automata Learning and A* Search. ICGI 2021: 113-129 - [c37]Nasim Baharisangari, Jean-Raphaël Gaglione, Daniel Neider, Ufuk Topcu, Zhe Xu:
Uncertainty-Aware Signal Temporal Logic Inference. VSTTE 2021: 61-85 - [i26]Tzanis Anevlavis, Matthew Philippe, Daniel Neider, Paulo Tabuada:
Being correct is not enough: efficient verification using robust linear temporal logic. CoRR abs/2102.11991 (2021) - [i25]Jean-Raphaël Gaglione, Daniel Neider, Rajarshi Roy, Ufuk Topcu, Zhe Xu:
Learning Linear Temporal Properties from Noisy Data: A MaxSAT Approach. CoRR abs/2104.15083 (2021) - [i24]Nasim Baharisangari, Jean-Raphaël Gaglione, Daniel Neider, Ufuk Topcu, Zhe Xu:
Uncertainty-Aware Signal Temporal logic. CoRR abs/2105.11545 (2021) - [i23]Ritam Raha, Rajarshi Roy, Nathanaël Fijalkow, Daniel Neider:
Scalable Anytime Algorithms for Learning Formulas in Linear Temporal Logic. CoRR abs/2110.06726 (2021) - [i22]Lukas Struppek, Dominik Hintersdorf, Daniel Neider, Kristian Kersting:
Learning to Break Deep Perceptual Hashing: The Use Case NeuralHash. CoRR abs/2111.06628 (2021) - 2020
- [j7]Daniel Neider, Alexander Weinert, Martin Zimmermann:
Synthesizing optimally resilient controllers. Acta Informatica 57(1-2): 195-221 (2020) - [j6]Daniel Neider, P. Madhusudan, Shambwaditya Saha, Pranav Garg, Daejun Park:
A Learning-Based Approach to Synthesizing Invariants for Incomplete Verification Engines. J. Autom. Reason. 64(7): 1523-1552 (2020) - [c36]Zhe Xu, Ivan Gavran, Yousef Ahmad, Rupak Majumdar, Daniel Neider, Ufuk Topcu, Bo Wu:
Joint Inference of Reward Machines and Policies for Reinforcement Learning. ICAPS 2020: 590-598 - [c35]Oliver Markgraf, Chih-Duo Hong, Anthony W. Lin, Muhammad Najib, Daniel Neider:
Parameterized Synthesis with Safety Properties. APLAS 2020: 273-292 - [c34]Stanly Samuel, Kaushik Mallik, Anne-Kathrin Schmuck, Daniel Neider:
Resilient Abstraction-Based Controller Design. CDC 2020: 2123-2129 - [c33]Rüdiger Ehlers, Ivan Gavran, Daniel Neider:
Learning Properties in LTL ∩ ACTL from Positive Examples Only. FMCAD 2020: 104-112 - [c32]Corto Mascle, Daniel Neider, Maximilian Schwenger, Paulo Tabuada, Alexander Weinert, Martin Zimmermann:
From LTL to rLTL monitoring: improved monitorability through robust semantics. HSCC 2020: 7:1-7:12 - [c31]Stanly Samuel, Kaushik Mallik, Anne-Kathrin Schmuck, Daniel Neider:
Resilient abstraction-based controller design. HSCC 2020: 33:1-33:2 - [c30]Rajarshi Roy, Dana Fisman, Daniel Neider:
Learning Interpretable Models in the Property Specification Language. IJCAI 2020: 2213-2219 - [c29]Daniel Neider, Patrick Totzke, Martin Zimmermann:
Optimally Resilient Strategies in Pushdown Safety Games. MFCS 2020: 74:1-74:15 - [c28]Benedikt Böing, Rajarshi Roy, Emmanuel Müller, Daniel Neider:
Quality Guarantees for Autoencoders via Unsupervised Adversarial Attacks. ECML/PKDD (2) 2020: 206-222 - [i21]Rajarshi Roy, Dana Fisman, Daniel Neider:
Learning Interpretable Models in the Property Specification Language. CoRR abs/2002.03668 (2020) - [i20]Bishwamittra Ghosh, Daniel Neider:
A Formal Language Approach to Explaining RNNs. CoRR abs/2006.07292 (2020) - [i19]Zhe Xu, Bo Wu, Daniel Neider, Ufuk Topcu:
Active Finite Reward Automaton Inference and Reinforcement Learning Using Queries and Counterexamples. CoRR abs/2006.15714 (2020) - [i18]Stanly Samuel, Kaushik Mallik, Anne-Kathrin Schmuck, Daniel Neider:
Resilient Abstraction-Based Controller Design. CoRR abs/2008.06315 (2020) - [i17]Daniel Neider, Bishwamittra Ghosh:
Probably Approximately Correct Explanations of Machine Learning Models via Syntax-Guided Synthesis. CoRR abs/2009.08770 (2020) - [i16]Igor Khmelnitsky, Daniel Neider, Rajarshi Roy, Benoît Barbot, Benedikt Bollig, Alain Finkel, Serge Haddad, Martin Leucker, Lina Ye:
Property-Directed Verification of Recurrent Neural Networks. CoRR abs/2009.10610 (2020) - [i15]Oliver Markgraf, Chih-Duo Hong, Anthony W. Lin, Muhammad Najib, Daniel Neider:
Parameterized Synthesis with Safety Properties. CoRR abs/2009.13459 (2020)
2010 – 2019
- 2019
- [c27]Daniel Neider, Oliver Markgraf:
Learning-Based Synthesis of Safety Controllers. FMCAD 2019: 120-128 - [c26]Tzanis Anevlavis, Daniel Neider, Matthew Philippe, Paulo Tabuada:
Evrostos: the rLTL verifier. HSCC 2019: 218-223 - [c25]Daniel Neider, Shambwaditya Saha, Pranav Garg, P. Madhusudan:
Sorcar: Property-Driven Algorithms for Learning Conjunctive Invariants. SAS 2019: 323-346 - [c24]Daniel Neider, Alexander Weinert, Martin Zimmermann:
Robust, Expressive, and Quantitative Linear Temporal Logics: Pick any Two for Free. GandALF 2019: 1-16 - [i14]Daniel Neider, Oliver Markgraf:
Learning-Based Synthesis of Safety Controllers. CoRR abs/1901.06801 (2019) - [i13]Zhe Xu, Ivan Gavran, Yousef Ahmad, Rupak Majumdar, Daniel Neider, Ufuk Topcu, Bo Wu:
Joint Inference of Reward Machines and Policies for Reinforcement Learning. CoRR abs/1909.05912 (2019) - [i12]Daniel Neider, Patrick Totzke, Martin Zimmermann:
Optimally Resilient Strategies in Pushdown Safety Games. CoRR abs/1912.04771 (2019) - [i11]Michael Benedikt, Kristian Kersting, Phokion G. Kolaitis, Daniel Neider:
Logic and Learning (Dagstuhl Seminar 19361). Dagstuhl Reports 9(9): 1-22 (2019) - 2018
- [j5]P. Ezudheen, Daniel Neider, Deepak D'Souza, Pranav Garg, P. Madhusudan:
Horn-ICE learning for synthesizing invariants and contracts. Proc. ACM Program. Lang. 2(OOPSLA): 131:1-131:25 (2018) - [j4]Daniel Neider, Shambwaditya Saha, P. Madhusudan:
Compositional Synthesis of Piece-Wise Functions by Learning Classifiers. ACM Trans. Comput. Log. 19(2): 10:1-10:23 (2018) - [c23]Daniel Neider, Rick Smetsers, Frits W. Vaandrager, Harco Kuppens:
Benchmarks for Automata Learning and Conformance Testing. Models, Mindsets, Meta 2018: 390-416 - [c22]Tzanis Anevlavis, Matthew Philippe, Daniel Neider, Paulo Tabuada:
Verifying rLTL formulas: now faster than ever before! CDC 2018: 1556-1561 - [c21]Daniel Neider, Alexander Weinert, Martin Zimmermann:
Synthesizing Optimally Resilient Controllers. CSL 2018: 34:1-34:17 - [c20]Daniel Neider, Ivan Gavran:
Learning Linear Temporal Properties. FMCAD 2018: 1-10 - [c19]Daniel Neider, Pranav Garg, P. Madhusudan, Shambwaditya Saha, Daejun Park:
Invariant Synthesis for Incomplete Verification Engines. TACAS (1) 2018: 232-250 - [i10]Daniel Neider, Ivan Gavran:
Learning Linear Temporal Properties. CoRR abs/1806.03953 (2018) - [i9]Corto Mascle, Daniel Neider, Maximilian Schwenger, Paulo Tabuada, Alexander Weinert, Martin Zimmermann:
From LTL to rLTL Monitoring: Improved Monitorability through Robust Semantics. CoRR abs/1807.08203 (2018) - [i8]Daniel Neider, Alexander Weinert, Martin Zimmermann:
Robust, Expressive, and Quantitative Linear Temporal Logics: Pick any Two for Free. CoRR abs/1808.09028 (2018) - 2017
- [i7]Daniel Neider, Alexander Weinert, Martin Zimmermann:
Synthesizing Optimally Resilient Controllers. CoRR abs/1709.04854 (2017) - [i6]Daniel Neider, Pranav Garg, P. Madhusudan, Shambwaditya Saha, Daejun Park:
Invariant Synthesis for Incomplete Verification Engines. CoRR abs/1712.05581 (2017) - [i5]Deepak D'Souza, P. Ezudheen, Pranav Garg, P. Madhusudan, Daniel Neider:
Horn-ICE Learning for Synthesizing Invariants and Contracts. CoRR abs/1712.09418 (2017) - 2016
- [c18]Eric Dallal, Daniel Neider, Paulo Tabuada:
Synthesis of safety controllers robust to unmodeled intermittent disturbances. CDC 2016: 7425-7430 - [c17]Paulo Tabuada, Daniel Neider:
Robust Linear Temporal Logic. CSL 2016: 10:1-10:21 - [c16]Pranav Garg, Daniel Neider, P. Madhusudan, Dan Roth:
Learning invariants using decision trees and implication counterexamples. POPL 2016: 499-512 - [c15]Christof Löding, P. Madhusudan, Daniel Neider:
Abstract Learning Frameworks for Synthesis. TACAS 2016: 167-185 - [c14]Daniel Neider, Shambwaditya Saha, P. Madhusudan:
Synthesizing Piece-Wise Functions by Learning Classifiers. TACAS 2016: 186-203 - [c13]Daniel Neider, Ufuk Topcu:
An Automaton Learning Approach to Solving Safety Games over Infinite Graphs. TACAS 2016: 204-221 - [i4]Daniel Neider, Ufuk Topcu:
An Automaton Learning Approach to Solving Safety Games over Infinite Graphs. CoRR abs/1601.01660 (2016) - 2015
- [j3]Pranav Garg, Christof Löding, P. Madhusudan, Daniel Neider:
Quantified data automata for linear data structures: a register automaton model with applications to learning invariants of programs manipulating arrays and lists. Formal Methods Syst. Des. 47(1): 120-157 (2015) - [i3]Christof Löding, P. Madhusudan, Daniel Neider:
Abstract Learning Frameworks for Synthesis. CoRR abs/1507.05612 (2015) - [i2]Paulo Tabuada, Daniel Neider:
Robust Linear Temporal Logic. CoRR abs/1510.08970 (2015) - 2014
- [b1]Daniel Neider:
Applications of automata learning in verification and synthesis. RWTH Aachen University, 2014, pp. 1-267 - [j2]Daniel Neider, Roman Rabinovich, Martin Zimmermann:
Down the Borel hierarchy: Solving Muller games via safety games. Theor. Comput. Sci. 560: 219-234 (2014) - [c12]Pranav Garg, Christof Löding, P. Madhusudan, Daniel Neider:
ICE: A Robust Framework for Learning Invariants. CAV 2014: 69-87 - 2013
- [c11]Pranav Garg, Christof Löding, P. Madhusudan, Daniel Neider:
Learning Universally Quantified Invariants of Linear Data Structures. CAV 2013: 813-829 - [c10]Daniel Neider, Nils Jansen:
Regular Model Checking Using Solver Technologies and Automata Learning. NASA Formal Methods 2013: 16-31 - [i1]Pranav Garg, Christof Löding, P. Madhusudan, Daniel Neider:
Learning Universally Quantified Invariants of Linear Data Structures. CoRR abs/1302.2273 (2013) - 2012
- [c9]Daniel Neider:
Computing Minimal Separating DFAs and Regular Invariants Using SAT and SMT Solvers. ATVA 2012: 354-369 - [c8]Martin Leucker, Daniel Neider:
Learning Minimal Deterministic Automata from Inexperienced Teachers. ISoLA (1) 2012: 524-538 - [c7]Daniel Neider, Roman Rabinovich, Martin Zimmermann:
Down the Borel Hierarchy: Solving Muller Games via Safety Games. GandALF 2012: 169-182 - 2011
- [c6]Daniel Neider:
Small Strategies for Safety Games. ATVA 2011: 306-320 - [c5]Daniel Neider:
Development of libALF. EEFSW 2011: 13-18 - 2010
- [c4]