default search action
Meisam Razaviyayn
Person information
Refine list
refinements active!
zoomed in on ?? of ?? records
view refined list in
export refined list as
showing all ?? records
2020 – today
- 2024
- [c44]Sina Baharlouei, Shivam Patel, Meisam Razaviyayn:
f-FERM: A Scalable Framework for Robust Fair Empirical Risk Minimization. ICLR 2024 - [c43]Yinbin Han, Meisam Razaviyayn, Renyuan Xu:
Neural Network-Based Score Estimation in Diffusion Models: Optimization and Generalization. ICLR 2024 - [c42]Andrew Lowy, Zeman Li, Tianjian Huang, Meisam Razaviyayn:
Optimal Differentially Private Model Training with Public Data. ICML 2024 - [c41]James Flemings, Meisam Razaviyayn, Murali Annavaram:
Differentially Private Next-Token Prediction of Large Language Models. NAACL-HLT 2024: 4390-4404 - [i50]Yinbin Han, Meisam Razaviyayn, Renyuan Xu:
Neural Network-Based Score Estimation in Diffusion Models: Optimization and Generalization. CoRR abs/2401.15604 (2024) - [i49]James Flemings, Meisam Razaviyayn, Murali Annavaram:
Differentially Private Next-Token Prediction of Large Language Models. CoRR abs/2403.15638 (2024) - 2023
- [j33]Zhongruo Wang, Krishnakumar Balasubramanian, Shiqian Ma, Meisam Razaviyayn:
Zeroth-order algorithms for nonconvex-strongly-concave minimax problems with improved complexities. J. Glob. Optim. 87(2): 709-740 (2023) - [j32]Sina Baharlouei, Sze-Chuan Suen, Meisam Razaviyayn:
RIFLE: Imputation and Robust Inference from Low Order Marginals. Trans. Mach. Learn. Res. 2023 (2023) - [j31]Tianjian Huang, Shaunak Ashish Halbe, Chinnadhurai Sankar, Pooyan Amini, Satwik Kottur, Alborz Geramifard, Meisam Razaviyayn, Ahmad Beirami:
Robustness through Data Augmentation Loss Consistency. Trans. Mach. Learn. Res. 2023 (2023) - [c40]Andrew Lowy, Ali Ghafelebashi, Meisam Razaviyayn:
Private Non-Convex Federated Learning Without a Trusted Server. AISTATS 2023: 5749-5786 - [c39]Sina Baharlouei, Fatemeh Sheikholeslami, Meisam Razaviyayn, Zico Kolter:
Improving Adversarial Robustness via Joint Classification and Multiple Explicit Detection Classes. AISTATS 2023: 11059-11078 - [c38]Andrew Lowy, Meisam Razaviyayn:
Private Stochastic Optimization with Large Worst-Case Lipschitz Parameter: Optimal Rates for (Non-Smooth) Convex Losses and Extension to Non-Convex Losses. ALT 2023: 986-1054 - [c37]Hesameddin Mohammadi, Meisam Razaviyayn, Mihailo R. Jovanovic:
Noise amplifiation of momentum-based optimization algorithms. ACC 2023: 849-854 - [c36]Andrew Lowy, Devansh Gupta, Meisam Razaviyayn:
Stochastic Differentially Private and Fair Learning. ICLR 2023 - [c35]Andrew Lowy, Meisam Razaviyayn:
Private Federated Learning Without a Trusted Server: Optimal Algorithms for Convex Losses. ICLR 2023 - [c34]Daniel Lundström, Meisam Razaviyayn:
A Unifying Framework to the Analysis of Interaction Methods using Synergy Functions. ICML 2023: 23005-23032 - [i48]Yinbin Han, Meisam Razaviyayn, Renyuan Xu:
Policy Gradient Converges to the Globally Optimal Policy for Nearly Linear-Quadratic Regulators. CoRR abs/2303.08431 (2023) - [i47]Daniel Lundström, Meisam Razaviyayn:
Distributing Synergy Functions: Unifying Game-Theoretic Interaction Methods for Machine-Learning Explainability. CoRR abs/2305.03100 (2023) - [i46]Daniel Lundström, Meisam Razaviyayn:
Four Axiomatic Characterizations of the Integrated Gradients Attribution Method. CoRR abs/2306.13753 (2023) - [i45]Andrew Lowy, Zeman Li, Tianjian Huang, Meisam Razaviyayn:
Optimal Differentially Private Learning with Public Data. CoRR abs/2306.15056 (2023) - [i44]Sina Baharlouei, Meisam Razaviyayn:
Dr. FERMI: A Stochastic Distributionally Robust Fair Empirical Risk Minimization Framework. CoRR abs/2309.11682 (2023) - [i43]Ali Ghafelebashi, Meisam Razaviyayn, Maged M. Dessouky:
Incentive Systems for Fleets of New Mobility Services. CoRR abs/2312.02341 (2023) - [i42]Sina Baharlouei, Shivam Patel, Meisam Razaviyayn:
f-FERM: A Scalable Framework for Robust Fair Empirical Risk Minimization. CoRR abs/2312.03259 (2023) - 2022
- [j30]Maher Nouiehed, Meisam Razaviyayn:
Learning Deep Models: Critical Points and Local Openness. INFORMS J. Optim. 4(2): 148-173 (2022) - [j29]S. Karen Khatamifard, Zamshed I. Chowdhury, Nakul Pande, Meisam Razaviyayn, Chris H. Kim, Ulya R. Karpuzcu:
GeNVoM: Read Mapping Near Non-Volatile Memory. IEEE ACM Trans. Comput. Biol. Bioinform. 19(6): 3482-3496 (2022) - [j28]Zamshed I. Chowdhury, S. Karen Khatamifard, Salonik Resch, M. Hüsrev Cilasun, Zhengyang Zhao, Masoud Zabihi, Meisam Razaviyayn, Jian-Ping Wang, Sachin S. Sapatnekar, Ulya R. Karpuzcu:
CRAM-Seq: Accelerating RNA-Seq Abundance Quantification Using Computational RAM. IEEE Trans. Emerg. Top. Comput. 10(4): 2055-2071 (2022) - [j27]Andrew Lowy, Sina Baharlouei, Rakesh Pavan, Meisam Razaviyayn, Ahmad Beirami:
A Stochastic Optimization Framework for Fair Risk Minimization. Trans. Mach. Learn. Res. 2022 (2022) - [c33]Andrew Lowy, Devansh Gupta, Meisam Razaviyayn:
Stochastic Differentially Private and Fair Learning. AFCP 2022: 86-119 - [c32]Daniel Lundström, Tianjian Huang, Meisam Razaviyayn:
A Rigorous Study of Integrated Gradients Method and Extensions to Internal Neuron Attributions. ICML 2022: 14485-14508 - [c31]Sina Baharlouei, Meisam Razaviyayn, Elizabeth Tseng, David Tse:
I-CONVEX: Fast and Accurate de Novo Transcriptome Recovery from Long Reads. PKDD/ECML Workshops (2) 2022: 339-363 - [i41]Daniel Lundström, Tianjian Huang, Meisam Razaviyayn:
A Rigorous Study of Integrated Gradients Method and Extensions to Internal Neuron Attributions. CoRR abs/2202.11912 (2022) - [i40]Andrew Lowy, Ali Ghafelebashi, Meisam Razaviyayn:
Private Non-Convex Federated Learning Without a Trusted Server. CoRR abs/2203.06735 (2022) - [i39]Andrew Lowy, Meisam Razaviyayn:
Private Stochastic Optimization in the Presence of Outliers: Optimal Rates for (Non-Smooth) Convex Losses and Extension to Non-Convex Losses. CoRR abs/2209.07403 (2022) - [i38]Hesameddin Mohammadi, Meisam Razaviyayn, Mihailo R. Jovanovic:
Tradeoffs between convergence rate and noise amplification for momentum-based accelerated optimization algorithms. CoRR abs/2209.11920 (2022) - [i37]Andrew Lowy, Devansh Gupta, Meisam Razaviyayn:
Stochastic Differentially Private and Fair Learning. CoRR abs/2210.08781 (2022) - [i36]Sina Baharlouei, Fatemeh Sheikholeslami, Meisam Razaviyayn, Zico Kolter:
Improving Adversarial Robustness via Joint Classification and Multiple Explicit Detection Classes. CoRR abs/2210.14410 (2022) - 2021
- [j26]Dmitrii M. Ostrovskii, Andrew Lowy, Meisam Razaviyayn:
Efficient Search of First-Order Nash Equilibria in Nonconvex-Concave Smooth Min-Max Problems. SIAM J. Optim. 31(4): 2508-2538 (2021) - [j25]Hesameddin Mohammadi, Meisam Razaviyayn, Mihailo R. Jovanovic:
Robustness of Accelerated First-Order Algorithms for Strongly Convex Optimization Problems. IEEE Trans. Autom. Control. 66(6): 2480-2495 (2021) - [j24]Songtao Lu, Jason D. Lee, Meisam Razaviyayn, Mingyi Hong:
Linearized ADMM Converges to Second-Order Stationary Points for Non-Convex Problems. IEEE Trans. Signal Process. 69: 4859-4874 (2021) - [c30]Tianjian Huang, Prajwal Singhania, Maziar Sanjabi, Pabitra Mitra, Meisam Razaviyayn:
Alternating Direction Method of Multipliers for Quantization. AISTATS 2021: 208-216 - [i35]Andrew Lowy, Meisam Razaviyayn:
Output Perturbation for Differentially Private Convex Optimization with Improved Population Loss Bounds, Runtimes and Applications to Private Adversarial Training. CoRR abs/2102.04704 (2021) - [i34]Andrew Lowy, Rakesh Pavan, Sina Baharlouei, Meisam Razaviyayn, Ahmad Beirami:
FERMI: Fair Empirical Risk Minimization via Exponential Rényi Mutual Information. CoRR abs/2102.12586 (2021) - [i33]Babak Barazandeh, Ali Ghafelebashi, Meisam Razaviyayn, Ram Sriharsha:
Efficient Algorithms for Estimating the Parameters of Mixed Linear Regression Models. CoRR abs/2105.05953 (2021) - [i32]Andrew Lowy, Meisam Razaviyayn:
Locally Differentially Private Federated Learning: Efficient Algorithms with Tight Risk Bounds. CoRR abs/2106.09779 (2021) - [i31]Sina Baharlouei, Kelechi Ogudu, Sze-Chuan Suen, Meisam Razaviyayn:
RIFLE: Robust Inference from Low Order Marginals. CoRR abs/2109.00644 (2021) - [i30]Dmitrii M. Ostrovskii, Babak Barazandeh, Meisam Razaviyayn:
Nonconvex-Nonconcave Min-Max Optimization with a Small Maximization Domain. CoRR abs/2110.03950 (2021) - [i29]Tianjian Huang, Shaunak Ashish Halbe, Chinnadhurai Sankar, Pooyan Amini, Satwik Kottur, Alborz Geramifard, Meisam Razaviyayn, Ahmad Beirami:
DAIR: Data Augmented Invariant Regularization. CoRR abs/2110.11205 (2021) - 2020
- [j23]Mingyi Hong, Tsung-Hui Chang, Xiangfeng Wang, Meisam Razaviyayn, Shiqian Ma, Zhi-Quan Luo:
A Block Successive Upper-Bound Minimization Method of Multipliers for Linearly Constrained Convex Optimization. Math. Oper. Res. 45(3): 833-861 (2020) - [j22]Maher Nouiehed, Meisam Razaviyayn:
A Trust Region Method for Finding Second-Order Stationarity in Linearly Constrained Nonconvex Optimization. SIAM J. Optim. 30(3): 2501-2529 (2020) - [j21]Meisam Razaviyayn, Tianjian Huang, Songtao Lu, Maher Nouiehed, Maziar Sanjabi, Mingyi Hong:
Nonconvex Min-Max Optimization: Applications, Challenges, and Recent Theoretical Advances. IEEE Signal Process. Mag. 37(5): 55-66 (2020) - [c29]Babak Barazandeh, Meisam Razaviyayn:
Solving Non-Convex Non-Differentiable Min-Max Games Using Proximal Gradient Method. ICASSP 2020: 3162-3166 - [c28]Sina Baharlouei, Maher Nouiehed, Ahmad Beirami, Meisam Razaviyayn:
Rényi Fair Inference. ICLR 2020 - [c27]Songtao Lu, Meisam Razaviyayn, Bo Yang, Kejun Huang, Mingyi Hong:
Finding Second-Order Stationary Points Efficiently in Smooth Nonconvex Linearly Constrained Optimization Problems. NeurIPS 2020 - [i28]Zhongruo Wang, Krishnakumar Balasubramanian, Shiqian Ma, Meisam Razaviyayn:
Zeroth-Order Algorithms for Nonconvex Minimax Problems with Improved Complexities. CoRR abs/2001.07819 (2020) - [i27]Babak Barazandeh, Meisam Razaviyayn:
Solving Non-Convex Non-Differentiable Min-Max Games using Proximal Gradient Method. CoRR abs/2003.08093 (2020) - [i26]Meisam Razaviyayn, Tianjian Huang, Songtao Lu, Maher Nouiehed, Maziar Sanjabi, Mingyi Hong:
Non-convex Min-Max Optimization: Applications, Challenges, and Recent Theoretical Advances. CoRR abs/2006.08141 (2020) - [i25]Tianjian Huang, Prajwal Singhania, Maziar Sanjabi, Pabitra Mitra, Meisam Razaviyayn:
Alternating Direction Method of Multipliers for Quantization. CoRR abs/2009.03482 (2020)
2010 – 2019
- 2019
- [j20]Maher Nouiehed, Jong-Shi Pang, Meisam Razaviyayn:
On the pervasiveness of difference-convexity in optimization and statistics. Math. Program. 174(1-2): 195-222 (2019) - [j19]Maher Nouiehed, Jong-Shi Pang, Meisam Razaviyayn:
Correction to: On the pervasiveness of difference-convexity in optimization and statistics. Math. Program. 174(1-2): 223-224 (2019) - [j18]Meisam Razaviyayn, Mingyi Hong, Navid Reyhanian, Zhi-Quan Luo:
A linearly convergent doubly stochastic Gauss-Seidel algorithm for solving linear equations and a certain class of over-parameterized optimization problems. Math. Program. 176(1-2): 465-496 (2019) - [c26]Hesameddin Mohammadi, Meisam Razaviyayn, Mihailo R. Jovanovic:
Performance of noisy Nesterov's accelerated method for strongly convex optimization problems. ACC 2019: 3426-3431 - [c25]Babak Barazandeh, Meisam Razaviyayn, Maziar Sanjabi:
Training Generative Networks Using Random Discriminators. DSW 2019: 327-332 - [c24]Maher Nouiehed, Maziar Sanjabi, Tianjian Huang, Jason D. Lee, Meisam Razaviyayn:
Solving a Class of Non-Convex Min-Max Games Using Iterative First Order Methods. NeurIPS 2019: 14905-14916 - [i24]Maher Nouiehed, Maziar Sanjabi, Tianjian Huang, Jason D. Lee, Meisam Razaviyayn:
Solving a Class of Non-Convex Min-Max Games Using Iterative First Order Methods. CoRR abs/1902.08297 (2019) - [i23]Babak Barazandeh, Meisam Razaviyayn, Maziar Sanjabi:
Training generative networks using random discriminators. CoRR abs/1904.09775 (2019) - [i22]Hesameddin Mohammadi, Meisam Razaviyayn, Mihailo R. Jovanovic:
Robustness of accelerated first-order algorithms for strongly convex optimization problems. CoRR abs/1905.11011 (2019) - [i21]Sina Baharlouei, Maher Nouiehed, Meisam Razaviyayn:
Rényi Fair Inference. CoRR abs/1906.12005 (2019) - [i20]Songtao Lu, Meisam Razaviyayn, Bo Yang, Kejun Huang, Mingyi Hong:
SNAP: Finding Approximate Second-Order Stationary Solutions Efficiently for Non-convex Linearly Constrained Problems. CoRR abs/1907.04450 (2019) - [i19]Maziar Sanjabi, Sina Baharlouei, Meisam Razaviyayn, Jason D. Lee:
When Does Non-Orthogonal Tensor Decomposition Have No Spurious Local Minima? CoRR abs/1911.09815 (2019) - 2018
- [j17]Augusto Aubry, Antonio De Maio, Alessio Zappone, Meisam Razaviyayn, Zhi-Quan Luo:
A New Sequential Optimization Procedure and Its Applications to Resource Allocation for Wireless Systems. IEEE Trans. Signal Process. 66(24): 6518-6533 (2018) - [c23]Hesameddin Mohammadi, Meisam Razaviyayn, Mihailo R. Jovanovic:
On the stability of gradient flow dynamics for a rank-one matrix approximation problem. ACC 2018: 4533-4538 - [c22]Hesameddin Mohammadi, Meisam Razaviyayn, Mihailo R. Jovanovic:
Variance Amplification of Accelerated First-Order Algorithms for Strongly Convex Quadratic Optimization Problems. CDC 2018: 5753-5758 - [c21]Babak Barazandeh, Meisam Razaviyayn:
On the Behavior of the Expectation-Maximization Algorithm for Mixture Models. GlobalSIP 2018: 61-65 - [c20]Maher Nouiehed, Meisam Razaviyayn:
Learning Deep Models: Critical Points and Local Openness. ICLR (Workshop) 2018 - [c19]Mingyi Hong, Meisam Razaviyayn, Jason D. Lee:
Gradient Primal-Dual Algorithm Converges to Second-Order Stationary Solution for Nonconvex Distributed Optimization Over Networks. ICML 2018: 2014-2023 - [c18]Maziar Sanjabi, Jimmy Ba, Meisam Razaviyayn, Jason D. Lee:
On the Convergence and Robustness of Training GANs with Regularized Optimal Transport. NeurIPS 2018: 7091-7101 - [i18]Maziar Sanjabi, Jimmy Ba, Meisam Razaviyayn, Jason D. Lee:
Solving Approximate Wasserstein GANs to Stationarity. CoRR abs/1802.08249 (2018) - [i17]Mingyi Hong, Jason D. Lee, Meisam Razaviyayn:
Gradient Primal-Dual Algorithm Converges to Second-Order Stationary Solutions for Nonconvex Distributed Optimization. CoRR abs/1802.08941 (2018) - [i16]Babak Barazandeh, Meisam Razaviyayn:
On the Behavior of the Expectation-Maximization Algorithm for Mixture Models. CoRR abs/1809.08705 (2018) - [i15]Maziar Sanjabi, Meisam Razaviyayn, Jason D. Lee:
Solving Non-Convex Non-Concave Min-Max Games Under Polyak-Łojasiewicz Condition. CoRR abs/1812.02878 (2018) - [i14]Zamshed I. Chowdhury, S. Karen Khatamifard, Zhengyang Zhao, Masoud Zabihi, Salonik Resch, Meisam Razaviyayn, Jianping Wang, Sachin S. Sapatnekar, Ulya R. Karpuzcu:
Computational RAM to Accelerate String Matching at Scale. CoRR abs/1812.08918 (2018) - 2017
- [j16]Jong-Shi Pang, Meisam Razaviyayn, Alberth Alvarado:
Computing B-Stationary Points of Nonsmooth DC Programs. Math. Oper. Res. 42(1): 95-118 (2017) - [j15]Mingyi Hong, Xiangfeng Wang, Meisam Razaviyayn, Zhi-Quan Luo:
Iteration complexity analysis of block coordinate descent methods. Math. Program. 163(1-2): 85-114 (2017) - [c17]Ahmad Beirami, Meisam Razaviyayn, Shahin Shahrampour, Vahid Tarokh:
On Optimal Generalizability in Parametric Learning. NIPS 2017: 3455-3465 - [i13]S. Karen Khatamifard, Zamshed I. Chowdhury, Nakul Pande, Meisam Razaviyayn, Chris H. Kim, Ulya R. Karpuzcu:
A Non-volatile Near-Memory Read Mapping Accelerator. CoRR abs/1709.02381 (2017) - [i12]Ahmad Beirami, Meisam Razaviyayn, Shahin Shahrampour, Vahid Tarokh:
On Optimal Generalizability in Parametric Learning. CoRR abs/1711.05323 (2017) - 2016
- [j14]Meisam Razaviyayn, Maziar Sanjabi, Zhi-Quan Luo:
A Stochastic Successive Minimization Method for Nonsmooth Nonconvex Optimization with Applications to Transceiver Design in Wireless Communication Networks. Math. Program. 157(2): 515-545 (2016) - [j13]Mingyi Hong, Zhi-Quan Luo, Meisam Razaviyayn:
Convergence Analysis of Alternating Direction Method of Multipliers for a Family of Nonconvex Problems. SIAM J. Optim. 26(1): 337-364 (2016) - [j12]Mingyi Hong, Meisam Razaviyayn, Zhi-Quan Luo, Jong-Shi Pang:
A Unified Algorithmic Framework for Block-Structured Optimization Involving Big Data: With applications in machine learning and signal processing. IEEE Signal Process. Mag. 33(1): 57-77 (2016) - [j11]Qingjiang Shi, Meisam Razaviyayn, Mingyi Hong, Zhi-Quan Luo:
SINR Constrained Beamforming for a MIMO Multi-User Downlink System: Algorithms and Convergence Analysis. IEEE Trans. Signal Process. 64(11): 2920-2933 (2016) - [p1]Jong-Shi Pang, Meisam Razaviyayn:
A unified distributed algorithm for non-cooperative games. Big Data over Networks 2016: 101-134 - [i11]Qingjiang Shi, Haoran Sun, Songtao Lu, Mingyi Hong, Meisam Razaviyayn:
Inexact Block Coordinate Descent Methods For Symmetric Nonnegative Matrix Factorization. CoRR abs/1607.03092 (2016) - 2015
- [c16]Mingyi Hong, Zhi-Quan Luo, Meisam Razaviyayn:
Convergence analysis of alternating direction method of multipliers for a family of nonconvex problems. ICASSP 2015: 3836-3840 - [c15]Farzan Farnia, Meisam Razaviyayn, Sreeram Kannan, David Tse:
Minimum HGR correlation principle: From marginals to joint distribution. ISIT 2015: 1377-1381 - [c14]Meisam Razaviyayn, Farzan Farnia, David Tse:
Discrete Rényi Classifiers. NIPS 2015: 3276-3284 - [i10]Farzan Farnia, Meisam Razaviyayn, Sreeram Kannan, David Tse:
Minimum HGR Correlation Principle: From Marginals to Joint Distribution. CoRR abs/1504.06010 (2015) - [i9]Qingjiang Shi, Meisam Razaviyayn, Mingyi Hong, Zhi-Quan Luo:
SINR Constrained Beamforming for a MIMO Multi-user Downlink System. CoRR abs/1507.07115 (2015) - [i8]Meisam Razaviyayn, Farzan Farnia, David N. C. Tse:
Discrete Rényi Classifiers. CoRR abs/1511.01764 (2015) - [i7]Meisam Razaviyayn, Hung-Wei Tseng, Zhi-Quan Luo:
Computational Intractability of Dictionary Learning for Sparse Representation. CoRR abs/1511.01776 (2015) - 2014
- [j10]Hadi Baligh, Mingyi Hong, Wei-Cheng Liao, Zhi-Quan Luo, Meisam Razaviyayn, Maziar Sanjabi, Ruoyu Sun:
Cross-Layer Provision of Future Cellular Networks: A WMMSE-based approach. IEEE Signal Process. Mag. 31(6): 56-68 (2014) - [j9]Meisam Razaviyayn, Mohammad Hadi Baligh, Aaron Callard, Zhi-Quan Luo:
Joint User Grouping and Transceiver Design in a MIMO Interfering Broadcast Channel. IEEE Trans. Signal Process. 62(1): 85-94 (2014) - [j8]Maziar Sanjabi, Meisam Razaviyayn, Zhi-Quan Luo:
Optimal Joint Base Station Assignment and Beamforming for Heterogeneous Networks. IEEE Trans. Signal Process. 62(8): 1950-1961 (2014) - [c13]Meisam Razaviyayn, Hung-Wei Tseng, Zhi-Quan Luo:
Dictionary learning for sparse representation: Complexity and algorithms. ICASSP 2014: 5247-5251 - [c12]Mingyi Hong, Tsung-Hui Chang, Xiangfeng Wang, Meisam Razaviyayn, Shiqian Ma, Zhi-Quan Luo:
A block coordinate descent method of multipliers: Convergence analysis and applications. ICASSP 2014: 7689-7693 - [c11]Xiangfeng Wang, Mingyi Hong, Tsung-Hui Chang, Meisam Razaviyayn, Zhi-Quan Luo:
Joint day-ahead power procurement and load scheduling using stochastic alternating direction method of multipliers. ICASSP 2014: 7754-7758 - [c10]Meisam Razaviyayn, Mingyi Hong, Zhi-Quan Luo, Jong-Shi Pang:
Parallel Successive Convex Approximation for Nonsmooth Nonconvex Optimization. NIPS 2014: 1440-1448 - [c9]Maziar Sanjabi, Mingyi Hong, Meisam Razaviyayn, Zhi-Quan Luo:
Joint base station clustering and beamformer design for partial coordinated transmission using statistical channel state information. SPAWC 2014: 359-363 - [i6]Hadi Baligh, Mingyi Hong, Wei-Cheng Liao, Zhi-Quan Luo, Meisam Razaviyayn, Maziar Sanjabi, Ruoyu Sun:
Cross Layer Provision of Future Cellular Networks. CoRR abs/1407.1424 (2014) - 2013
- [j7]Mingyi Hong, Zi Xu, Meisam Razaviyayn, Zhi-Quan Luo:
Joint User Grouping and Linear Virtual Beamforming: Complexity, Algorithms and Approximation Bounds. IEEE J. Sel. Areas Commun. 31(10): 2013-2027 (2013) - [j6]Meisam Razaviyayn, Mingyi Hong, Zhi-Quan Luo:
A Unified Convergence Analysis of Block Successive Minimization Methods for Nonsmooth Optimization. SIAM J. Optim. 23(2): 1126-1153 (2013) - [j5]Meisam Razaviyayn, Mingyi Hong, Zhi-Quan Luo:
Linear transceiver design for a MIMO interfering broadcast channel achieving max-min fairness. Signal Process. 93(12): 3327-3340 (2013) - [c8]Meisam Razaviyayn, Maziar Sanjabi Boroujeni, Zhi-Quan Luo:
A stochastic weighted MMSE approach to sum rate maximization for a MIMO interference channel. SPAWC 2013: 325-329 - [i5]Meisam Razaviyayn, Maziar Sanjabi, Zhi-Quan Luo:
A Stochastic Successive Minimization Method for Nonsmooth Nonconvex Optimization with Applications to Transceiver Design in Wireless Communication Networks. CoRR abs/1307.4457 (2013) - 2012
- [j4]Meisam Razaviyayn, Maziar Sanjabi, Zhi-Quan Luo:
Linear Transceiver Design for Interference Alignment: Complexity and Computation. IEEE Trans. Inf. Theory 58(5): 2896-2910 (2012) - [j3]Meisam Razaviyayn, Gennady Lyubeznik, Zhi-Quan Luo:
On the Degrees of Freedom Achievable Through Interference Alignment in a MIMO Interference Channel. IEEE Trans. Signal Process. 60(2): 812-821 (2012) - [c7]Mingyi Hong, Meisam Razaviyayn, Ruoyu Sun, Zhi-Quan Luo:
Joint transceiver design and base station clustering for heterogeneous networks. ACSCC 2012: 574-578 - [c6]Qingjiang Shi, Meisam Razaviyayn, Mingyi Hong, Zhi-Quan Luo:
SINR constrained beamforming for a MIMO multi-user downlink system. ACSCC 2012: 1991-1995 - [c5]