


Остановите войну!
for scientists:
Jonathan P. How
Person information

- affiliation: Massachusetts Institute of Technology, Department of Aeronautics and Astronautics
Refine list

refinements active!
zoomed in on ?? of ?? records
view refined list in
export refined list as
showing all ?? records
2020 – today
- 2022
- [j80]Sharan Raja, Golnaz Habibi
, Jonathan P. How
:
Communication-Aware Consensus-Based Decentralized Task Allocation in Communication Constrained Environments. IEEE Access 10: 19753-19767 (2022) - [j79]Jesus Tordesillas
, Jonathan P. How
:
PANTHER: Perception-Aware Trajectory Planner in Dynamic Environments. IEEE Access 10: 22662-22677 (2022) - [j78]Jesus Tordesillas
, Jonathan P. How
:
MADER: Trajectory Planner in Multiagent and Dynamic Environments. IEEE Trans. Robotics 38(1): 463-476 (2022) - [j77]Jesus Tordesillas
, Brett Thomas Lopez
, Michael Everett
, Jonathan P. How
:
FASTER: Fast and Safe Trajectory Planner for Navigation in Unknown Environments. IEEE Trans. Robotics 38(2): 922-938 (2022) - [i105]Yulun Tian, Amrit Singh Bedi, Alec Koppel, Miguel Calvo-Fullana, David M. Rosen, Jonathan P. How:
Distributed Riemannian Optimization with Lazy Communication for Collaborative Geometric Estimation. CoRR abs/2203.00851 (2022) - [i104]Dong-Ki Kim, Matthew Riemer, Miao Liu, Jakob N. Foerster, Michael Everett, Chuangchuang Sun, Gerald Tesauro, Jonathan P. How:
Influencing Long-Term Behavior in Multiagent Reinforcement Learning. CoRR abs/2203.03535 (2022) - [i103]Lena M. Downes, Dong-Ki Kim, Ted J. Steiner, Jonathan P. How:
City-wide Street-to-Satellite Image Geolocalization of a Mobile Ground Agent. CoRR abs/2203.05612 (2022) - [i102]Macheng Shen, Jonathan P. How:
Safe adaptation in multiagent competition. CoRR abs/2203.07562 (2022) - [i101]Andrew Fishberg, Jonathan P. How:
Multi-Agent Relative Pose Estimation with UWB and Constrained Communications. CoRR abs/2203.11004 (2022) - [i100]Xiaoyi Cai, Michael Everett, Jonathan Fink, Jonathan P. How:
Risk-Aware Off-Road Navigation via a Learned Speed Distribution Map. CoRR abs/2203.13429 (2022) - [i99]Miguel Calvo-Fullana, Jonathan P. How:
Distributed Filtering with Value of Information Censoring. CoRR abs/2204.00474 (2022) - [i98]Nicholas Rober, Michael Everett, Jonathan P. How:
Backward Reachability Analysis for Neural Feedback Loops. CoRR abs/2204.08319 (2022) - [i97]Parker C. Lusk, Jonathan P. How:
Global Data Association for SLAM with 3D Grassmannian Manifold Objects. CoRR abs/2205.08556 (2022) - 2021
- [j76]Michael Everett
, Yu Fan Chen, Jonathan P. How
:
Collision Avoidance in Pedestrian-Rich Environments With Deep Reinforcement Learning. IEEE Access 9: 10357-10377 (2021) - [j75]Michael Everett
, Golnaz Habibi, Chuangchuang Sun, Jonathan P. How
:
Reachability Analysis of Neural Feedback Loops. IEEE Access 9: 163938-163953 (2021) - [j74]Brett Thomas Lopez
, Jean-Jacques E. Slotine
, Jonathan P. How
:
Robust Adaptive Control Barrier Functions: An Adaptive and Data-Driven Approach to Safety. IEEE Control. Syst. Lett. 5(3): 1031-1036 (2021) - [j73]Michael Everett
, Golnaz Habibi
, Jonathan P. How
:
Robustness Analysis of Neural Networks via Efficient Partitioning With Applications in Control Systems. IEEE Control. Syst. Lett. 5(6): 2114-2119 (2021) - [j72]Yulun Tian
, Kasra Khosoussi
, Jonathan P. How:
A resource-aware approach to collaborative loop-closure detection with provable performance guarantees. Int. J. Robotics Res. 40(10-11) (2021) - [j71]Golnaz Habibi
, Jonathan P. How
:
Human Trajectory Prediction Using Similarity-Based Multi-Model Fusion. IEEE Robotics Autom. Lett. 6(2): 715-722 (2021) - [j70]Bruno Brito
, Michael Everett
, Jonathan P. How
, Javier Alonso-Mora
:
Where to go Next: Learning a Subgoal Recommendation Policy for Navigation in Dynamic Environments. IEEE Robotics Autom. Lett. 6(3): 4616-4623 (2021) - [j69]Yulun Tian
, Kasra Khosoussi
, David M. Rosen, Jonathan P. How
:
Distributed Certifiably Correct Pose-Graph Optimization. IEEE Trans. Robotics 37(6): 2137-2156 (2021) - [c193]Macheng Shen, Jonathan P. How:
Robust Opponent Modeling via Adversarial Ensemble Reinforcement Learning. ICAPS 2021: 578-587 - [c192]Michael Everett, Golnaz Habibi, Jonathan P. How:
Robustness Analysis of Neural Networks via Efficient Partitioning with Applications in Control Systems. ACC 2021: 888-893 - [c191]Max L. Greene, Zachary I. Bell, Scott A. Nivison, Jonathan P. How, Warren E. Dixon:
Cooperative Model-Based Reinforcement Learning for Approximate Optimal Tracking. ACC 2021: 1973-1978 - [c190]Dong-Ki Kim, Miao Liu, Matthew Riemer, Chuangchuang Sun, Marwa Abdulhai, Golnaz Habibi, Sebastian Lopez-Cot, Gerald Tesauro, Jonathan P. How:
A Policy Gradient Algorithm for Learning to Learn in Multiagent Reinforcement Learning. ICML 2021: 5541-5550 - [c189]Qiangqiang Huang, Can Pu, Dehann Fourie, Kasra Khosoussi, Jonathan P. How, John J. Leonard:
NF-iSAM: Incremental Smoothing and Mapping via Normalizing Flows. ICRA 2021: 1095-1102 - [c188]Michael Everett, Golnaz Habibi, Jonathan P. How:
Efficient Reachability Analysis of Closed-Loop Systems with Neural Network Controllers. ICRA 2021: 4384-4390 - [c187]Andrea Tagliabue, Jonathan P. How:
Airflow-Inertial Odometry for Resilient State Estimation on Multirotors. ICRA 2021: 5736-5743 - [c186]Stewart Jamieson
, Kaveh Fathian, Kasra Khosoussi, Jonathan P. How, Yogesh A. Girdhar:
Multi-Robot Distributed Semantic Mapping in Unfamiliar Environments through Online Matching of Learned Representations. ICRA 2021: 8587-8593 - [c185]Xiaoyi Cai, Brent Schlotfeldt, Kasra Khosoussi, Nikolay Atanasov, George J. Pappas, Jonathan P. How:
Non-Monotone Energy-Aware Information Gathering for Heterogeneous Robot Teams. ICRA 2021: 8859-8865 - [c184]Chuangchuang Sun, Dong-Ki Kim, Jonathan P. How:
FISAR: Forward Invariant Safe Reinforcement Learning with a Deep Neural Network-Based Optimizer. ICRA 2021: 10617-10624 - [c183]Yun Chang, Yulun Tian, Jonathan P. How, Luca Carlone:
Kimera-Multi: a System for Distributed Multi-Robot Metric-Semantic Simultaneous Localization and Mapping. ICRA 2021: 11210-11218 - [c182]Parker C. Lusk, Kaveh Fathian, Jonathan P. How:
CLIPPER: A Graph-Theoretic Framework for Robust Data Association. ICRA 2021: 13828-13834 - [i96]Michael Everett, Golnaz Habibi, Jonathan P. How:
Efficient Reachability Analysis of Closed-Loop Systems with Neural Network Controllers. CoRR abs/2101.01815 (2021) - [i95]Xiaoyi Cai, Brent Schlotfeldt, Kasra Khosoussi, Nikolay Atanasov, George J. Pappas, Jonathan P. How:
Non-Monotone Energy-Aware Information Gathering for Heterogeneous Robot Teams. CoRR abs/2101.11093 (2021) - [i94]Andrea Tagliabue, Jesus Tordesillas, Xiaoyi Cai, Angel Santamaria-Navarro, Jonathan P. How, Luca Carlone, Ali-akbar Agha-mohammadi:
LION: Lidar-Inertial Observability-Aware Navigator for Vision-Denied Environments. CoRR abs/2102.03443 (2021) - [i93]Bruno Brito, Michael Everett, Jonathan P. How, Javier Alonso-Mora:
Where to go next: Learning a Subgoal Recommendation Policy for Navigation Among Pedestrians. CoRR abs/2102.13073 (2021) - [i92]Jesus Tordesillas, Jonathan P. How:
PANTHER: Perception-Aware Trajectory Planner in Dynamic Environments. CoRR abs/2103.06372 (2021) - [i91]Stewart Jamieson, Kaveh Fathian, Kasra Khosoussi, Jonathan P. How, Yogesh A. Girdhar:
Multi-Robot Distributed Semantic Mapping in Unfamiliar Environments through Online Matching of Learned Representations. CoRR abs/2103.14805 (2021) - [i90]Qiangqiang Huang, Can Pu, Dehann Fourie, Kasra Khosoussi, Jonathan P. How, John J. Leonard:
NF-iSAM: Incremental Smoothing and Mapping via Normalizing Flows. CoRR abs/2105.05045 (2021) - [i89]Andrea Tagliabue, Jonathan P. How:
Airflow-Inertial Odometry for Resilient State Estimation on Multirotors. CoRR abs/2105.13506 (2021) - [i88]Yulun Tian, Yun Chang, Fernando Herrera Arias, Carlos Nieto-Granda, Jonathan P. How, Luca Carlone:
Kimera-Multi: Robust, Distributed, Dense Metric-Semantic SLAM for Multi-Robot Systems. CoRR abs/2106.14386 (2021) - [i87]Michael Everett, Golnaz Habibi, Chuangchuang Sun, Jonathan P. How:
Reachability Analysis of Neural Feedback Loops. CoRR abs/2108.04140 (2021) - [i86]Chuangchuang Sun, Dong-Ki Kim, Jonathan P. How:
ROMAX: Certifiably Robust Deep Multiagent Reinforcement Learning via Convex Relaxation. CoRR abs/2109.06795 (2021) - [i85]Marwa Abdulhai, Dong-Ki Kim, Matthew Riemer, Miao Liu, Gerald Tesauro, Jonathan P. How:
Context-Specific Representation Abstraction for Deep Option Learning. CoRR abs/2109.09876 (2021) - [i84]Andrea Tagliabue, Dong-Ki Kim, Michael Everett, Jonathan P. How:
Demonstration-Efficient Guided Policy Search via Imitation of Robust Tube MPC. CoRR abs/2109.09910 (2021) - [i83]Qiangqiang Huang, Can Pu, Kasra Khosoussi, David M. Rosen, Dehann Fourie, Jonathan P. How, John J. Leonard:
Online Incremental Non-Gaussian Inference for SLAM Using Normalizing Flows. CoRR abs/2110.00876 (2021) - [i82]Parker C. Lusk, Ronak Roy, Kaveh Fathian, Jonathan P. How:
MIXER: A Principled Framework for Multimodal, Multiway Data Association. CoRR abs/2111.14990 (2021) - 2020
- [j68]Dong-Ki Kim
, Shayegan Omidshafiei, Jason Pazis, Jonathan P. How:
Crossmodal attentive skill learner: learning in Atari and beyond with audio-video inputs. Auton. Agents Multi Agent Syst. 34(1): 16 (2020) - [j67]Adrian Carrio
, Jesus Tordesillas
, Sai Vemprala
, Srikanth Saripalli
, Pascual Campoy
, Jonathan P. How
:
Onboard Detection and Localization of Drones Using Depth Maps. IEEE Access 8: 30480-30490 (2020) - [j66]Hriday Bavle
, Paloma de la Puente
, Jonathan P. How
, Pascual Campoy
:
VPS-SLAM: Visual Planar Semantic SLAM for Aerial Robotic Systems. IEEE Access 8: 60704-60718 (2020) - [j65]Yulun Tian
, Katherine Liu, Kyel Ok, Loc Tran, Danette Allen, Nicholas Roy, Jonathan P. How:
Search and rescue under the forest canopy using multiple UAVs. Int. J. Robotics Res. 39(10-11) (2020) - [j64]Samaneh Hosseini Semnani
, Hugh Liu
, Michael Everett
, Anton H. J. de Ruiter
, Jonathan P. How
:
Multi-Agent Motion Planning for Dense and Dynamic Environments via Deep Reinforcement Learning. IEEE Robotics Autom. Lett. 5(2): 3221-3226 (2020) - [j63]Parker C. Lusk
, Xiaoyi Cai
, Samir Wadhwania
, Aleix Paris
, Kaveh Fathian
, Jonathan P. How
:
A Distributed Pipeline for Scalable, Deconflicted Formation Flying. IEEE Robotics Autom. Lett. 5(4): 5213-5220 (2020) - [j62]Yulun Tian
, Alec Koppel
, Amrit Singh Bedi
, Jonathan P. How
:
Asynchronous and Parallel Distributed Pose Graph Optimization. IEEE Robotics Autom. Lett. 5(4): 5819-5826 (2020) - [j61]Kaveh Fathian
, Kasra Khosoussi
, Yulun Tian
, Parker C. Lusk
, Jonathan P. How
:
CLEAR: A Consistent Lifting, Embedding, and Alignment Rectification Algorithm for Multiview Data Association. IEEE Trans. Robotics 36(6): 1686-1703 (2020) - [c181]Lena M. Downes, Ted J. Steiner, Jonathan P. How:
Lunar Terrain Relative Navigation Using a Convolutional Neural Network for Visual Crater Detection. ACC 2020: 4448-4453 - [c180]Dong-Ki Kim, Miao Liu, Shayegan Omidshafiei, Sebastian Lopez-Cot, Matthew Riemer, Golnaz Habibi, Gerald Tesauro, Sami Mourad, Murray Campbell, Jonathan P. How:
Learning Hierarchical Teaching Policies for Cooperative Agents. AAMAS 2020: 620-628 - [c179]Golnaz Habibi, Nikita Jaipuria, Jonathan P. How:
SILA: An Incremental Learning Approach for Pedestrian Trajectory Prediction. CVPR Workshops 2020: 4411-4421 - [c178]Stewart Jamieson, Jonathan P. How, Yogesh A. Girdhar
:
Active Reward Learning for Co-Robotic Vision Based Exploration in Bandwidth Limited Environments. ICRA 2020: 1806-1812 - [c177]Arpan Kusari, Jonathan P. How:
Predicting optimal value functions by interpolating reward functions in scalarized multi-objective reinforcement learning. ICRA 2020: 7484-7490 - [c176]Aleix Paris
, Brett Thomas Lopez, Jonathan P. How:
Dynamic Landing of an Autonomous Quadrotor on a Moving Platform in Turbulent Wind Conditions. ICRA 2020: 9577-9583 - [c175]Suhan Kim, Regan Kubicek, Aleix Paris, Andrea Tagliabue, Jonathan P. How, Sarah Bergbreiter:
A Whisker-inspired Fin Sensor for Multi-directional Airflow Sensing. IROS 2020: 1330-1337 - [c174]Andrea Tagliabue, Aleix Paris, Suhan Kim, Regan Kubicek, Sarah Bergbreiter, Jonathan P. How:
Touch the Wind: Simultaneous Airflow, Drag and Interaction Sensing on a Multirotor. IROS 2020: 1645-1652 - [c173]Chuangchuang Sun, Macheng Shen, Jonathan P. How:
Scaling Up Multiagent Reinforcement Learning for Robotic Systems: Learn an Adaptive Sparse Communication Graph. IROS 2020: 11755-11762 - [c172]Andrea Tagliabue, Jesus Tordesillas, Xiaoyi Cai, Angel Santamaria-Navarro, Jonathan P. How, Luca Carlone, Ali-akbar Agha-mohammadi:
LION: Lidar-Inertial Observability-Aware Navigator for Vision-Denied Environments. ISER 2020: 380-390 - [c171]Kristoffer M. Frey, Ted J. Steiner, Jonathan P. How:
Collision Probabilities for Continuous-Time Systems Without Sampling. Robotics: Science and Systems 2020 - [i81]Jesus Tordesillas, Brett Thomas Lopez, Michael Everett, Jonathan P. How:
FASTER: Fast and Safe Trajectory Planner for Flights in Unknown Environments. CoRR abs/2001.04420 (2020) - [i80]Samaneh Hosseini Semnani, Hugh Liu, Michael Everett, Anton H. J. de Ruiter, Jonathan P. How:
Multi-agent Motion Planning for Dense and Dynamic Environments via Deep Reinforcement Learning. CoRR abs/2001.06627 (2020) - [i79]Rose E. Wang, Michael Everett, Jonathan P. How:
R-MADDPG for Partially Observable Environments and Limited Communication. CoRR abs/2002.06684 (2020) - [i78]Chuangchuang Sun, Macheng Shen, Jonathan P. How:
Scaling Up Multiagent Reinforcement Learning for Robotic Systems: Learn an Adaptive Sparse Communication Graph. CoRR abs/2003.01040 (2020) - [i77]Parker C. Lusk, Xiaoyi Cai, Samir Wadhwania, Aleix Paris, Kaveh Fathian, Jonathan P. How:
A Distributed Pipeline for Scalable, Deconflicted Formation Flying. CoRR abs/2003.01851 (2020) - [i76]Andrea Tagliabue, Aleix Paris, Suhan Kim, Regan Kubicek, Sarah Bergbreiter, Jonathan P. How:
Touch the Wind: Simultaneous Airflow, Drag and Interaction Sensing on a Multirotor. CoRR abs/2003.02305 (2020) - [i75]Yulun Tian, Alec Koppel, Amrit Singh Bedi, Jonathan P. How:
Asynchronous and Parallel Distributed Pose Graph Optimization. CoRR abs/2003.03281 (2020) - [i74]Stewart Jamieson, Jonathan P. How, Yogesh A. Girdhar:
Active Reward Learning for Co-Robotic Vision Based Exploration in Bandwidth Limited Environments. CoRR abs/2003.05016 (2020) - [i73]Brett Thomas Lopez, Jean-Jacques E. Slotine, Jonathan P. How:
Adaptive Safety for Uncertain Nonlinear Systems with Control Barrier Functions and Contraction Metrics. CoRR abs/2003.10028 (2020) - [i72]Michael Everett, Björn Lütjens, Jonathan P. How:
Certified Adversarial Robustness for Deep Reinforcement Learning. CoRR abs/2004.06496 (2020) - [i71]Kristoffer M. Frey, Ted J. Steiner, Jonathan P. How:
Collision Probabilities for Continuous-Time Systems Without Sampling [with Appendices]. CoRR abs/2006.01109 (2020) - [i70]Chuangchuang Sun, Dong-Ki Kim, Jonathan P. How:
Set-Invariant Constrained Reinforcement Learning with a Meta-Optimizer. CoRR abs/2006.11419 (2020) - [i69]Lena M. Downes, Ted J. Steiner, Jonathan P. How:
Lunar Terrain Relative Navigation Using a Convolutional Neural Network for Visual Crater Detection. CoRR abs/2007.07702 (2020) - [i68]Michael Everett, Golnaz Habibi, Jonathan P. How:
Robustness Analysis of Neural Networks via Efficient Partitioning: Theory and Applications in Control Systems. CoRR abs/2010.00540 (2020) - [i67]Jesus Tordesillas, Jonathan P. How:
MINVO Basis: Finding Simplexes with Minimum Volume Enclosing Polynomial Curves. CoRR abs/2010.10726 (2020) - [i66]Jesus Tordesillas, Jonathan P. How:
MADER: Trajectory Planner in Multi-Agent and Dynamic Environments. CoRR abs/2010.11061 (2020) - [i65]Dong-Ki Kim, Miao Liu, Matthew Riemer, Chuangchuang Sun, Marwa Abdulhai, Golnaz Habibi, Sebastian Lopez-Cot, Gerald Tesauro, Jonathan P. How:
A Policy Gradient Algorithm for Learning to Learn in Multiagent Reinforcement Learning. CoRR abs/2011.00382 (2020) - [i64]Yun Chang, Yulun Tian, Jonathan P. How, Luca Carlone:
Kimera-Multi: a System for Distributed Multi-Robot Metric-Semantic Simultaneous Localization and Mapping. CoRR abs/2011.04087 (2020) - [i63]Parker C. Lusk, Kaveh Fathian, Jonathan P. How:
CLIPPER: A Graph-Theoretic Framework for Robust Data Association. CoRR abs/2011.10202 (2020) - [i62]Savva Morozov, Parker C. Lusk, Brett Thomas Lopez, Jonathan P. How:
Performance Analysis of Adaptive Dynamic Tube MPC. CoRR abs/2012.12403 (2020)
2010 – 2019
- 2019
- [j60]Kasra Khosoussi
, Matthew Giamou, Gaurav S. Sukhatme, Shoudong Huang
, Gamini Dissanayake
, Jonathan P. How:
Reliable Graphs for SLAM. Int. J. Robotics Res. 38(2-3) (2019) - [j59]Christopher Amato, George Dimitri Konidaris, Leslie Pack Kaelbling, Jonathan P. How:
Modeling and Planning with Macro-Actions in Decentralized POMDPs. J. Artif. Intell. Res. 64: 817-859 (2019) - [j58]Trevor Campbell
, Brian Kulis
, Jonathan P. How
:
Dynamic Clustering Algorithms via Small-Variance Analysis of Markov Chain Mixture Models. IEEE Trans. Pattern Anal. Mach. Intell. 41(6): 1338-1352 (2019) - [j57]Lee E. Clement, Valentin Peretroukhin, Matthew Giamou, John J. Leonard, Hadas Kress-Gazit, Jonathan P. How, Michael Milford
, Oliver Brock, Ryan Gariepy, Nicholas Roy, Hallie Siegel, Ludovic Righetti, Aude Billard, Jonathan Kelly:
Where Do We Go From Here? Debates on the Future of Robotics Research at ICRA 2019 [From the Field]. IEEE Robotics Autom. Mag. 26(3): 7-10 (2019) - [j56]Alejandro Rodriguez-Ramos
, Adrian Alvarez-Fernandez, Hriday Bavle
, Pascual Campoy
, Jonathan P. How
:
Vision-Based Multirotor Following Using Synthetic Learning Techniques. Sensors 19(21): 4794 (2019) - [j55]Hongchuan Wei
, Pingping Zhu
, Miao Liu
, Jonathan P. How
, Silvia Ferrari
:
Automatic Pan-Tilt Camera Control for Learning Dirichlet Process Gaussian Process (DPGP) Mixture Models of Multiple Moving Targets. IEEE Trans. Autom. Control. 64(1): 159-173 (2019) - [c170]Shayegan Omidshafiei, Dong-Ki Kim, Miao Liu, Gerald Tesauro, Matthew Riemer, Christopher Amato, Murray Campbell, Jonathan P. How:
Learning to Teach in Cooperative Multiagent Reinforcement Learning. AAAI 2019: 6128-6136 - [c169]Trong Nghia Hoang, Quang Minh Hoang, Kian Hsiang Low, Jonathan P. How:
Collective Online Learning of Gaussian Processes in Massive Multi-Agent Systems. AAAI 2019: 7850-7857 - [c168]Brett Thomas Lopez, Jonathan P. How, Jean-Jacques E. Slotine:
Dynamic Tube MPC for Nonlinear Systems. ACC 2019: 1655-1662 - [c167]Björn Lütjens, Michael Everett, Jonathan P. How:
Certified Adversarial Robustness for Deep Reinforcement Learning. CoRL 2019: 1328-1337 - [c166]Kyel Ok, Katherine Liu, Kristoffer M. Frey, Jonathan P. How, Nicholas Roy:
Robust Object-based SLAM for High-speed Autonomous Navigation. ICRA 2019: 669-675 - [c165]Jesus Tordesillas, Brett Thomas Lopez, John Carter, John Ware, Jonathan P. How:
Real-Time Planning with Multi-Fidelity Models for Agile Flights in Unknown Environments. ICRA 2019: 725-731 - [c164]Kristoffer M. Frey, Ted J. Steiner, Jonathan P. How:
Efficient Constellation-Based Map-Merging for Semantic SLAM. ICRA 2019: 1302-1308 - [c163]Macheng Shen, Jonathan P. How:
Active Perception in Adversarial Scenarios using Maximum Entropy Deep Reinforcement Learning. ICRA 2019: 3384-3390 - [c162]Björn Lütjens, Michael Everett, Jonathan P. How:
Safe Reinforcement Learning With Model Uncertainty Estimates. ICRA 2019: 8662-8668 - [c161]Michael Everett, Justin Miller, Jonathan P. How:
Planning Beyond The Sensing Horizon Using a Learned Context. IROS 2019: 1064-1071 - [c160]Jesus Tordesillas, Brett Thomas Lopez, Jonathan P. How:
FASTER: Fast and Safe Trajectory Planner for Flights in Unknown Environments. IROS 2019: 1934-1940 - [c159]Samir Wadhwania, Dong-Ki Kim, Shayegan Omidshafiei, Jonathan P. How:
Policy Distillation and Value Matching in Multiagent Reinforcement Learning. IROS 2019: 8193-8200 - [i61]Yulun Tian, Kasra Khosoussi, Jonathan P. How:
Resource-Aware Algorithms for Distributed Loop Closure Detection with Provable Performance Guarantees. CoRR abs/1901.05925 (2019) - [i60]Kaveh Fathian, Kasra Khosoussi, Parker C. Lusk, Yulun Tian, Jonathan P. How:
CLEAR: A Consistent Lifting, Embedding, and Alignment Rectification Algorithm for Multi-Agent Data Association. CoRR abs/1902.02256 (2019) - [i59]Macheng Shen, Jonathan P. How:
Active Perception in Adversarial Scenarios using Maximum Entropy Deep Reinforcement Learning. CoRR abs/1902.05644 (2019) - [i58]Yulun Tian, Kasra Khosoussi
, Jonathan P. How:
Block-Coordinate Minimization for Large SDPs with Block-Diagonal Constraints. CoRR abs/1903.00597 (2019) - [i57]Dong-Ki Kim, Miao Liu, Shayegan Omidshafiei, Sebastian Lopez-Cot, Matthew Riemer, Golnaz Habibi, Gerald Tesauro, Sami Mourad, Murray Campbell, Jonathan P. How:
Learning Hierarchical Teaching in Cooperative Multiagent Reinforcement Learning. CoRR abs/1903.03216 (2019) - [i56]Jesus Tordesillas, Brett Thomas Lopez, Jonathan P. How:
FaSTraP: Fast and Safe Trajectory Planner for Flights in Unknown Environments. CoRR abs/1903.03558 (2019) - [i55]Samir Wadhwania, Dong-Ki Kim, Shayegan Omidshafiei, Jonathan P. How:
Policy Distillation and Value Matching in Multiagent Reinforcement Learning. CoRR abs/1903.06592 (2019) - [i54]Yulun Tian, Kasra Khosoussi, Jonathan P. How:
A Resource-Aware Approach to Collaborative Loop Closure Detection with Provable Performance Guarantees. CoRR abs/1907.04904 (2019) - [i53]Brett Thomas Lopez, Jean-Jacques E. Slotine, Jonathan P. How:
Dynamic Tube MPC for Nonlinear Systems. CoRR abs/1907.06553 (2019) - [i52]Kristoffer M. Frey, Ted J. Steiner, Jonathan P. How:
Towards Online Observability-Aware Trajectory Optimization for Landmark-based Estimators. CoRR abs/1908.03790 (2019) - [i51]Michael Everett, Justin Miller, Jonathan P. How:
Planning Beyond the Sensing Horizon Using a Learned Context. CoRR abs/1908.09171 (2019) - [i50]Yulun Tian, Katherine Liu, Kyel Ok, Loc Tran, Danette Allen, Nicholas Roy, Jonathan P. How:
Search and Rescue under the Forest Canopy using Multiple UAVs. CoRR abs/1908.10541 (2019) - [i49]Arpan Kusari, Jonathan P. How:
Predicting optimal value functions by interpolating reward functions in scalarized multi-objective reinforcement learning. CoRR abs/1909.05004 (2019) - [i48]