


Остановите войну!
for scientists:
Martin Takác
Person information

Refine list

refinements active!
zoomed in on ?? of ?? records
view refined list in
export refined list as
showing all ?? records
2020 – today
- 2022
- [j32]Alistair Knott
, Mark Sagar, Martin Takác:
The ethics of interaction with neurorobotic agents: a case study with BabyX. AI Ethics 2(1): 115-128 (2022) - [j31]Yicheng Chen
, Rick S. Blum
, Martin Takác
, Brian M. Sadler
:
Distributed Learning With Sparsified Gradient Differences. IEEE J. Sel. Top. Signal Process. 16(3): 585-600 (2022) - [j30]Afshin Oroojlooyjadid
, MohammadReza Nazari
, Lawrence V. Snyder
, Martin Takác
:
A Deep Q-Network for the Beer Game: Deep Reinforcement Learning for Inventory Optimization. Manuf. Serv. Oper. Manag. 24(1): 285-304 (2022) - [i62]Yicheng Chen, Rick S. Blum, Martin Takác, Brian M. Sadler:
Distributed Learning With Sparsified Gradient Differences. CoRR abs/2202.02491 (2022) - [i61]Guangyi Liu, Arash Amini, Martin Takác, Nader Motee:
Robustness Analysis of Classification Using Recurrent Neural Networks with Perturbed Sequential Input. CoRR abs/2203.05403 (2022) - [i60]Abdurakhmon Sadiev, Aleksandr Beznosikov, Abdulla Jasem Almansoori, Dmitry Kamzolov, Rachael Tappenden, Martin Takác:
Stochastic Gradient Methods with Preconditioned Updates. CoRR abs/2206.00285 (2022) - [i59]Egor Gladin, Maksim Lavrik-Karmazin, Karina Zainullina, Varvara Rudenko, Alexander V. Gasnikov, Martin Takác:
Algorithm for Constrained Markov Decision Process with Linear Convergence. CoRR abs/2206.01666 (2022) - [i58]Yuzhen Han, Ruben Solozabal, Jing Dong, Xingyu Zhou, Martin Takác, Bin Gu:
Learning to Control under Time-Varying Environment. CoRR abs/2206.02507 (2022) - [i57]Zangir Iklassov, Dmitrii Medvedev, Ruben Solozabal, Martin Takác:
Learning to generalize Dispatching rules on the Job Shop Scheduling. CoRR abs/2206.04423 (2022) - [i56]Aleksandr Beznosikov, Aibek Alanov, Dmitry Kovalev, Martin Takác, Alexander V. Gasnikov:
On Scaled Methods for Saddle Point Problems. CoRR abs/2206.08303 (2022) - 2021
- [j29]Krishnan Kumaran, Dimitri J. Papageorgiou, Martin Takác
, Laurens Lueg, Nicolas V. Sahinidis:
Active metric learning for supervised classification. Comput. Chem. Eng. 144: 107132 (2021) - [j28]Majid Jahani, Naga Venkata C. Gudapati, Chenxin Ma, Rachael Tappenden
, Martin Takác
:
Fast and safe: accelerated gradient methods with optimality certificates and underestimate sequences. Comput. Optim. Appl. 79(2): 369-404 (2021) - [j27]Chenxin Ma
, Martin Jaggi
, Frank E. Curtis
, Nathan Srebro
, Martin Takác
:
An accelerated communication-efficient primal-dual optimization framework for structured machine learning. Optim. Methods Softw. 36(1): 20-44 (2021) - [j26]Lam M. Nguyen
, Katya Scheinberg
, Martin Takác
:
Inexact SARAH algorithm for stochastic optimization. Optim. Methods Softw. 36(1): 237-258 (2021) - [j25]Alistair Knott, Martin Takác:
Roles for Event Representations in Sensorimotor Experience, Memory Formation, and Language Processing. Top. Cogn. Sci. 13(1): 187-205 (2021) - [c29]Majid Jahani, MohammadReza Nazari, Rachael Tappenden, Albert S. Berahas, Martin Takác:
SONIA: A Symmetric Blockwise Truncated Optimization Algorithm. AISTATS 2021: 487-495 - [c28]Hui Ye, Xiulong Yang, Martin Takác, Rajshekhar Sunderraman, Shihao Ji:
Improving Text-to-Image Synthesis Using Contrastive Learning. BMVC 2021: 154 - [c27]Guangyi Liu, Arash Amini, Martin Takác, Nader Motee:
Classification-Aware Path Planning of Network of Robots. DARS 2021: 294-305 - [c26]Mark Sagar, Alecia Moser, Annette M. E. Henderson, Sam Morrison, Nathan Pages, Alireza Nejati, Wan-Ting Yeh, Jonathan Conder, Alistair Knott, Khurram Jawed, Martin Takác:
A platform for embodied models of infant cognition, and its use in a model of event perception. ICDL 2021: 1-7 - [i55]Zheng Shi, Nicolas Loizou, Peter Richtárik, Martin Takác:
AI-SARAH: Adaptive and Implicit Stochastic Recursive Gradient Methods. CoRR abs/2102.09700 (2021) - [i54]Hui Ye, Xiulong Yang, Martin Takác, Rajshekhar Sunderraman, Shihao Ji:
Improving Text-to-Image Synthesis Using Contrastive Learning. CoRR abs/2107.02423 (2021) - [i53]Majid Jahani, Sergey Rusakov, Zheng Shi, Peter Richtárik, Michael W. Mahoney, Martin Takác:
Doubly Adaptive Scaled Algorithm for Machine Learning Using Second-Order Information. CoRR abs/2109.05198 (2021) - [i52]Aleksandr Beznosikov, Martin Takác:
Random-reshuffled SARAH does not need a full gradient computations. CoRR abs/2111.13322 (2021) - 2020
- [j24]Nur Sila Gulgec, Martin Takác
, Shamim N. Pakzad:
Structural sensing with deep learning: Strain estimation from acceleration data for fatigue assessment. Comput. Aided Civ. Infrastructure Eng. 35(12): 1349-1364 (2020) - [j23]Afshin Oroojlooyjadid, Lawrence V. Snyder, Martin Takác
:
Applying deep learning to the newsvendor problem. IISE Trans. 52(4): 444-463 (2020) - [j22]Aryan Mokhtari, Alec Koppel, Martin Takác, Alejandro Ribeiro:
A Class of Parallel Doubly Stochastic Algorithms for Large-Scale Learning. J. Mach. Learn. Res. 21: 120:1-120:51 (2020) - [j21]Albert S. Berahas
, Martin Takác
:
A robust multi-batch L-BFGS method for machine learning. Optim. Methods Softw. 35(1): 191-219 (2020) - [j20]Peter Richtárik, Martin Takác
:
Stochastic Reformulations of Linear Systems: Algorithms and Convergence Theory. SIAM J. Matrix Anal. Appl. 41(2): 487-524 (2020) - [c25]Majid Jahani, Xi He, Chenxin Ma, Aryan Mokhtari, Dheevatsa Mudigere, Alejandro Ribeiro, Martin Takác:
Efficient Distributed Hessian Free Algorithm for Large-scale Empirical Risk Minimization via Accumulating Sample Strategy. AISTATS 2020: 2634-2644 - [c24]Martin Takác, Alistair Knott, Mark Sagar:
SOM-Based System for Sequence Chunking and Planning. ICANN (1) 2020: 672-684 - [c23]Zheng Shi, Nur Sila Gulgec, Albert S. Berahas, Shamim N. Pakzad, Martin Takác
:
Finite Difference Neural Networks: Fast Prediction of Partial Differential Equations. ICMLA 2020: 130-135 - [c22]Majid Jahani, MohammadReza Nazari, Sergey Rusakov, Albert S. Berahas, Martin Takác
:
Scaling Up Quasi-newton Algorithms: Communication Efficient Distributed SR1. LOD (1) 2020: 41-54 - [i51]Zheng Shi, Nur Sila Gulgec, Albert S. Berahas, Shamim N. Pakzad, Martin Takác:
Finite Difference Neural Networks: Fast Prediction of Partial Differential Equations. CoRR abs/2006.01892 (2020) - [i50]Ruben Solozabal, Josu Ceberio, Martin Takác:
Constrained Combinatorial Optimization with Reinforcement Learning. CoRR abs/2006.11984 (2020) - [i49]Soheil Sadeghi Eshkevari, Martin Takác, Shamim N. Pakzad, Majid Jahani:
DynNet: Physics-based neural architecture design for linear and nonlinear structural response modeling and prediction. CoRR abs/2007.01814 (2020) - [i48]Guangyi Liu, Arash Amini, Martin Takác, Héctor Muñoz-Avila, Nader Motee:
Reinforcement Learning based Multi-Robot Classification via Scalable Communication Structure. CoRR abs/2012.10480 (2020)
2010 – 2019
- 2019
- [j19]Lam M. Nguyen, Phuong Ha Nguyen, Peter Richtárik, Katya Scheinberg
, Martin Takác, Marten van Dijk:
New Convergence Aspects of Stochastic Gradient Algorithms. J. Mach. Learn. Res. 20: 176:1-176:49 (2019) - [c21]Mikhail Krechetov, Jakub Marecek, Yury Maximov, Martin Takác
:
Entropy-Penalized Semidefinite Programming. IJCAI 2019: 1123-1129 - [c20]Hossein K. Mousavi, MohammadReza Nazari, Martin Takác
, Nader Motee:
Multi-Agent Image Classification via Reinforcement Learning. IROS 2019: 5020-5027 - [i47]Konstantin Mishchenko, Eduard Gorbunov
, Martin Takác, Peter Richtárik:
Distributed Learning with Compressed Gradient Differences. CoRR abs/1901.09269 (2019) - [i46]Albert S. Berahas, Majid Jahani, Martin Takác:
Quasi-Newton Methods for Deep Learning: Forget the Past, Just Sample. CoRR abs/1901.09997 (2019) - [i45]Hossein K. Mousavi, MohammadReza Nazari, Martin Takác, Nader Motee:
Multi-Agent Image Classification via Reinforcement Learning. CoRR abs/1905.04835 (2019) - [i44]MohammadReza Nazari, Majid Jahani, Lawrence V. Snyder, Martin Takác:
Don't Forget Your Teacher: A Corrective Reinforcement Learning Framework. CoRR abs/1905.13562 (2019) - [i43]Hossein K. Mousavi, Guangyi Liu, Weihang Yuan, Martin Takác, Héctor Muñoz-Avila, Nader Motee:
A Layered Architecture for Active Perception: Image Classification using Deep Reinforcement Learning. CoRR abs/1909.09705 (2019) - [i42]Nur Sila Gulgec, Zheng Shi, Neil Deshmukh, Shamim N. Pakzad, Martin Takác:
FD-Net with Auxiliary Time Steps: Fast Prediction of PDEs using Hessian-Free Trust-Region Methods. CoRR abs/1910.12680 (2019) - [i41]Sélim Chraibi, Ahmed Khaled, Dmitry Kovalev, Peter Richtárik, Adil Salim, Martin Takác:
Distributed Fixed Point Methods with Compressed Iterates. CoRR abs/1912.09925 (2019) - 2018
- [j18]Xi He, Rachael Tappenden, Martin Takác
:
Dual Free Adaptive Minibatch SDCA for Empirical Risk Minimization. Frontiers Appl. Math. Stat. 4: 33 (2018) - [j17]Rachael Tappenden, Martin Takác
, Peter Richtárik:
On the complexity of parallel coordinate descent. Optim. Methods Softw. 33(2): 372-395 (2018) - [c19]Lam M. Nguyen, Phuong Ha Nguyen, Marten van Dijk, Peter Richtárik, Katya Scheinberg
, Martin Takác:
SGD and Hogwild! Convergence Without the Bounded Gradients Assumption. ICML 2018: 3747-3755 - [c18]MohammadReza Nazari, Afshin Oroojlooy, Lawrence V. Snyder, Martin Takác:
Reinforcement Learning for Solving the Vehicle Routing Problem. NeurIPS 2018: 9861-9871 - [c17]Jakub Marecek
, Peter Richtárik, Martin Takác
:
Matrix Completion Under Interval Uncertainty: Highlights. ECML/PKDD (3) 2018: 621-625 - [i40]Lam M. Nguyen
, Phuong Ha Nguyen, Marten van Dijk, Peter Richtárik, Katya Scheinberg, Martin Takác:
SGD and Hogwild! Convergence Without the Bounded Gradients Assumption. CoRR abs/1802.03801 (2018) - [i39]MohammadReza Nazari, Afshin Oroojlooy, Lawrence V. Snyder, Martin Takác:
Deep Reinforcement Learning for Solving the Vehicle Routing Problem. CoRR abs/1802.04240 (2018) - [i38]Krishnan Kumaran, Dimitri J. Papageorgiou, Yutong Chang, Minhan Li, Martin Takác:
Active Metric Learning for Supervised Classification. CoRR abs/1803.10647 (2018) - [i37]Jie Liu, Yu Rong, Martin Takác, Junzhou Huang:
On the Acceleration of L-BFGS with Second-Order Information and Stochastic Batches. CoRR abs/1807.05328 (2018) - [i36]Majid Jahani, Xi He, Chenxin Ma, Aryan Mokhtari, Dheevatsa Mudigere, Alejandro Ribeiro, Martin Takác:
Efficient Distributed Hessian Free Algorithm for Large-scale Empirical Risk Minimization via Accumulating Sample Strategy. CoRR abs/1810.11507 (2018) - [i35]Lam M. Nguyen
, Katya Scheinberg, Martin Takác:
Inexact SARAH Algorithm for Stochastic Optimization. CoRR abs/1811.10105 (2018) - [i34]Lam M. Nguyen
, Phuong Ha Nguyen, Peter Richtárik, Katya Scheinberg, Martin Takác, Marten van Dijk:
New Convergence Aspects of Stochastic Gradient Algorithms. CoRR abs/1811.12403 (2018) - 2017
- [j16]Piotr M. Patrzyk
, Martin Takác:
Cognitive adaptations to criminal justice lead to "paranoid" norm obedience. Adapt. Behav. 25(2): 83-95 (2017) - [j15]Jakub Marecek
, Peter Richtárik, Martin Takác
:
Matrix completion under interval uncertainty. Eur. J. Oper. Res. 256(1): 35-43 (2017) - [j14]Piotr M. Patrzyk
, Martin Takác:
Cooperation Via Intimidation: An Emergent System of Mutual Threats can Maintain Social Order. J. Artif. Soc. Soc. Simul. 20(4) (2017) - [j13]Virginia Smith, Simone Forte, Chenxin Ma, Martin Takác, Michael I. Jordan, Martin Jaggi:
CoCoA: A General Framework for Communication-Efficient Distributed Optimization. J. Mach. Learn. Res. 18: 230:1-230:49 (2017) - [j12]Chenxin Ma, Jakub Konecný, Martin Jaggi
, Virginia Smith, Michael I. Jordan
, Peter Richtárik, Martin Takác
:
Distributed optimization with arbitrary local solvers. Optim. Methods Softw. 32(4): 813-848 (2017) - [j11]Jakub Marecek
, Martin Takác
:
A low-rank coordinate-descent algorithm for semidefinite programming relaxations of optimal power flow. Optim. Methods Softw. 32(4): 849-871 (2017) - [j10]Jie Liu, Alan C. Liddell Jr., Jakub Marecek
, Martin Takác
:
Hybrid Methods in Solving Alternating-Current Optimal Power Flows. IEEE Trans. Smart Grid 8(6): 2988-2998 (2017) - [c16]Xi He, Dheevatsa Mudigere, Mikhail Smelyanskiy, Martin Takác:
Distributed Hessian-Free Optimization for Deep Neural Network. AAAI Workshops 2017 - [c15]Chenxin Ma, Martin Takác:
Distributed Inexact Damped Newton Method: Data Partitioning and Work-Balancing. AAAI Workshops 2017 - [c14]Lam M. Nguyen, Jie Liu, Katya Scheinberg
, Martin Takác:
SARAH: A Novel Method for Machine Learning Problems Using Stochastic Recursive Gradient. ICML 2017: 2613-2621 - [i33]Lam M. Nguyen
, Jie Liu, Katya Scheinberg, Martin Takác:
SARAH: A Novel Method for Machine Learning Problems Using Stochastic Recursive Gradient. CoRR abs/1703.00102 (2017) - [i32]Lam M. Nguyen
, Jie Liu, Katya Scheinberg, Martin Takác:
Stochastic Recursive Gradient Algorithm for Nonconvex Optimization. CoRR abs/1705.07261 (2017) - [i31]Peter Richtárik, Martin Takác:
Stochastic Reformulations of Linear Systems: Algorithms and Convergence Theory. CoRR abs/1706.01108 (2017) - [i30]Albert S. Berahas, Martin Takác:
A Robust Multi-Batch L-BFGS Method for Machine Learning. CoRR abs/1707.08552 (2017) - [i29]Afshin Oroojlooyjadid, MohammadReza Nazari, Lawrence V. Snyder, Martin Takác:
A Deep Q-Network for the Beer Game with Partial Information. CoRR abs/1708.05924 (2017) - [i28]Afshin Oroojlooyjadid, Lawrence V. Snyder, Martin Takác:
Stock-out Prediction in Multi-echelon Networks. CoRR abs/1709.06922 (2017) - [i27]Chenxin Ma, Naga Venkata C. Gudapati, Majid Jahani, Rachael Tappenden, Martin Takác:
Underestimate Sequences via Quadratic Averaging. CoRR abs/1710.03695 (2017) - [i26]Chenxin Ma, Martin Jaggi, Frank E. Curtis, Nathan Srebro, Martin Takác:
An Accelerated Communication-Efficient Primal-Dual Optimization Framework for Structured Machine Learning. CoRR abs/1711.05305 (2017) - 2016
- [j9]Michael Anton Palkovics, Martin Takác:
Exploration of cognition-affect and Type 1-Type 2 dichotomies in a computational model of decision making. Cogn. Syst. Res. 40: 144-160 (2016) - [j8]Peter Richtárik, Martin Takác:
Distributed Coordinate Descent Method for Learning with Big Data. J. Mach. Learn. Res. 17: 75:1-75:25 (2016) - [j7]Chenxin Ma, Rachael Tappenden, Martin Takác:
Linear Convergence of Randomized Feasible Descent Methods Under the Weak Strong Convexity Assumption. J. Mach. Learn. Res. 17: 230:1-230:24 (2016) - [j6]Jakub Konecný, Jie Liu, Peter Richtárik, Martin Takác
:
Mini-Batch Semi-Stochastic Gradient Descent in the Proximal Setting. IEEE J. Sel. Top. Signal Process. 10(2): 242-255 (2016) - [j5]Peter Richtárik, Martin Takác
:
Parallel coordinate descent methods for big data optimization. Math. Program. 156(1-2): 433-484 (2016) - [j4]Peter Richtárik, Martin Takác
:
On optimal probabilities in stochastic coordinate descent methods. Optim. Lett. 10(6): 1233-1243 (2016) - [c13]Martin Takác, Alistair Knott:
Mechanisms for storing and accessing event representations in episodic memory, and their expression in language: a neural network model. CogSci 2016 - [c12]Martin Takác, Alistair Knott:
Working memory encoding of events and their participants: a neural network model with applications in sensorimotor processing and sentence generation. CogSci 2016 - [c11]Celestine Dünner, Simone Forte, Martin Takác, Martin Jaggi:
Primal-Dual Rates and Certificates. ICML 2016: 783-792 - [c10]Zheng Qu, Peter Richtárik, Martin Takác, Olivier Fercoq:
SDNA: Stochastic Dual Newton Ascent for Empirical Risk Minimization. ICML 2016: 1823-1832 - [c9]Albert S. Berahas, Jorge Nocedal, Martin Takác:
A Multi-Batch L-BFGS Method for Machine Learning. NIPS 2016: 1055-1063 - [i25]Celestine Dünner, Simone Forte, Martin Takác, Martin Jaggi:
Primal-Dual Rates and Certificates. CoRR abs/1602.05205 (2016) - [i24]Chenxin Ma, Martin Takác:
Distributed Inexact Damped Newton Method: Data Partitioning and Load-Balancing. CoRR abs/1603.05191 (2016) - [i23]Albert S. Berahas, Jorge Nocedal, Martin Takác:
A Multi-Batch L-BFGS Method for Machine Learning. CoRR abs/1605.06049 (2016) - [i22]Xi He, Dheevatsa Mudigere, Mikhail Smelyanskiy, Martin Takác:
Large Scale Distributed Hessian-Free Optimization for Deep Neural Network. CoRR abs/1606.00511 (2016) - [i21]Afshin Oroojlooyjadid, Lawrence V. Snyder, Martin Takác:
Applying Deep Learning to the Newsvendor Problem. CoRR abs/1607.02177 (2016) - [i20]Virginia Smith, Simone Forte, Chenxin Ma, Martin Takác, Michael I. Jordan, Martin Jaggi:
CoCoA: A General Framework for Communication-Efficient Distributed Optimization. CoRR abs/1611.02189 (2016) - [i19]Jie Liu, Martin Takác:
Projected Semi-Stochastic Gradient Descent Method with Mini-Batch Scheme under Weak Strong Convexity Assumption. CoRR abs/1612.05356 (2016) - 2015
- [j3]Martin Takác, Alistair Knott:
A Neural Network Model of Episode Representations in Working Memory. Cogn. Comput. 7(5): 509-525 (2015) - [c8]Chenxin Ma, Virginia Smith, Martin Jaggi, Michael I. Jordan, Peter Richtárik, Martin Takác:
Adding vs. Averaging in Distributed Primal-Dual Optimization. ICML 2015: 1973-1982 - [i18]Zheng Qu, Peter Richtárik, Martin Takác, Olivier Fercoq:
SDNA: Stochastic Dual Newton Ascent for Empirical Risk Minimization. CoRR abs/1502.02268 (2015) - [i17]Chenxin Ma, Virginia Smith, Martin Jaggi, Michael I. Jordan, Peter Richtárik, Martin Takác:
Adding vs. Averaging in Distributed Primal-Dual Optimization. CoRR abs/1502.03508 (2015) - [i16]Jakub Konecný, Jie Liu, Peter Richtárik, Martin Takác:
Mini-Batch Semi-Stochastic Gradient Descent in the Proximal Setting. CoRR abs/1504.04407 (2015) - [i15]Chenxin Ma, Rachael Tappenden, Martin Takác:
Linear Convergence of the Randomized Feasible Descent Method Under the Weak Strong Convexity Assumption. CoRR abs/1506.02530 (2015) - [i14]Martin Takác, Peter Richtárik, Nathan Srebro:
Distributed Mini-Batch SDCA. CoRR abs/1507.08322 (2015) - [i13]Xi He, Martin Takác:
Dual Free SDCA for Empirical Risk Minimization with Adaptive Probabilities. CoRR abs/1510.06684 (2015) - [i12]Chenxin Ma, Martin Takác:
Partitioning Data on Features or Samples in Communication-Efficient Distributed Optimization? CoRR abs/1510.06688 (2015) - [i11]Chenxin Ma, Jakub Konecný, Martin Jaggi, Virginia Smith, Michael I. Jordan, Peter Richtárik, Martin Takác:
Distributed Optimization with Arbitrary Local Solvers. CoRR abs/1512.04039 (2015) - 2014
- [j2]Peter Richtárik, Martin Takác
:
Iteration complexity of randomized block-coordinate descent methods for minimizing a composite function. Math. Program. 144(1-2): 1-38 (2014) - [c7]Olivier Fercoq, Zheng Qu, Peter Richtárik, Martin Takác
:
Fast distributed coordinate descent for non-strongly convex losses. MLSP 2014: 1-6 - [c6]Martin Jaggi, Virginia Smith, Martin Takác, Jonathan Terhorst, Sanjay Krishnan, Thomas Hofmann, Michael I. Jordan:
Communication-Efficient Distributed Dual Coordinate Ascent. NIPS 2014: 3068-3076 - [i10]Olivier Fercoq, Zheng Qu, Peter Richtárik, Martin Takác:
Fast Distributed Coordinate Descent for Non-Strongly Convex Losses. CoRR abs/1405.5300 (2014) - [i9]Martin Takác, Jakub Marecek, Peter Richtárik:
Inequality-Constrained Matrix Completion: Adding the Obvious Helps! CoRR abs/1408.2467 (2014) - [i8]Martin Jaggi, Virginia Smith, Martin Takác, Jonathan Terhorst, Sanjay Krishnan, Thomas Hofmann, Michael I. Jordan:
Communication-Efficient Distributed Dual Coordinate Ascent. CoRR abs/1409.1458 (2014) - [i7]Jakub Konecný, Jie Liu, Peter Richtárik, Martin Takác:
mS2GD: Mini-Batch Semi-Stochastic Gradient Descent in the Proximal Setting. CoRR abs/1410.4744 (2014) - 2013
- [c5]Martin Takác, Alistair Knott:
A neural network model of working memory for episodes. CogSci 2013 - [c4]Martin Takác, Avleen Singh Bijral, Peter Richtárik, Nati Srebro:
Mini-Batch Primal and Dual Methods for SVMs. ICML (3) 2013: 1022-1030 - [i6]Martin Takác, Avleen Singh Bijral, Peter Richtárik, Nathan Srebro:
Mini-Batch Primal and Dual Methods for SVMs. CoRR abs/1303.2314 (2013) - [i5]Peter Richtárik, Martin Takác:
Distributed Coordinate Descent Method for Learning with Big Data. CoRR abs/1310.2059 (2013) - [i4]Peter Richtárik, Martin Takác:
On Optimal Probabilities in Stochastic Coordinate Descent Methods. CoRR abs/1310.3438 (2013) - [i3]Martin Takác, Selin Damla Ahipasaoglu, Ngai-Man Cheung, Peter Richtárik:
TOP-SPIN: TOPic discovery via Sparse Principal component INterference. CoRR abs/1311.1406 (2013) - 2012
- [i2]Peter Richtárik, Martin Takác:
Parallel Coordinate Descent Methods for Big Data Optimization. CoRR abs/1212.0873 (2012) - [i1]Peter Richtárik, Martin Takác, Selin Damla Ahipasaoglu:
Alternating Maximization: Unifying Framework for 8 Sparse PCA Formulations and Efficient Parallel Codes. CoRR abs/1212.4137 (2012) - 2011
- [c3]Martin Takác, Lubica Benusková, Alistair Knott:
A Sentence Generation Network That Learns Surface and Abstract Syntactic Structures. ICANN (2) 2011: 341-348 - [c2]Peter Richtárik, Martin Takác:
Efficient Serial and Parallel Coordinate Descent Methods for Huge-Scale Truss Topology Design. OR 2011: 27-32
2000 – 2009
- 2008
- [j1]Martin Takác:
Autonomous construction of ecologically and socially relevant semantics. Cogn. Syst. Res. 9(4): 293-311 (2008)
1990 – 1999
- 1997
- [c1]