


Остановите войну!
for scientists:
Kristian Kersting
Person information

- affiliation: TU Darmstadt, Computer Science Department, Germany
- affiliation: TU Darmstadt, Centre for Cognitive Science, Germany
- affiliation: TU Dortmund, Department of Computer Science, Germany
- affiliation: University of Bonn, Faculty of Agriculture, Germany
- affiliation: Fraunhofer Institute for Intelligent Analysis and Information Systems (IAIS), Sankt Augustin, Germany
- affiliation: Massachusetts Institute of Technology, Computer Science and Artificial Intelligence Laboratory (CSAIL), Cambridge, MA, USA
- affiliation (PhD 2005): University of Freiburg, Machine Learning Laborator, Germany
Refine list

refinements active!
zoomed in on ?? of ?? records
view refined list in
export refined list as
showing all ?? records
2020 – today
- 2022
- [j61]Parisa Kordjamshidi, Dan Roth, Kristian Kersting:
Declarative Learning-Based Programming as an Interface to AI Systems. Frontiers Artif. Intell. 5: 755361 (2022) - [j60]Xiaoting Shao
, Alejandro Molina, Antonio Vergari
, Karl Stelzner, Robert Peharz
, Thomas Liebig, Kristian Kersting
:
Conditional sum-product networks: Modular probabilistic circuits via gate functions. Int. J. Approx. Reason. 140: 298-313 (2022) - [j59]Aidmar Wainakh, Fabrizio Ventola, Till Müßig, Jens Keim, Carlos Garcia Cordero, Ephraim Zimmer, Tim Grube, Kristian Kersting, Max Mühlhäuser:
User-Level Label Leakage from Gradients in Federated Learning. Proc. Priv. Enhancing Technol. 2022(2): 227-244 (2022) - [c183]Lukas Struppek, Dominik Hintersdorf, Daniel Neider, Kristian Kersting:
Learning to Break Deep Perceptual Hashing: The Use Case NeuralHash. FAccT 2022: 58-69 - [c182]Patrick Schramowski, Christopher Tauchmann, Kristian Kersting:
Can Machines Help Us Answering Question 16 in Datasheets, and In Turn Reflecting on Inappropriate Content? FAccT 2022: 1350-1361 - [c181]Mina Ameli, Viktor Pfanschilling, Anar Amirli, Wolfgang Maaß
, Kristian Kersting:
Unsupervised Multi-sensor Anomaly Localization with Explainable AI. AIAI (1) 2022: 507-519 - [i92]Lukas Struppek, Dominik Hintersdorf, Antonio De Almeida Correia, Antonia Adler, Kristian Kersting:
Plug & Play Attacks: Towards Robust and Flexible Model Inversion Attacks. CoRR abs/2201.12179 (2022) - [i91]Xiaoting Shao, Karl Stelzner, Kristian Kersting:
Right for the Right Latent Factors: Debiasing Generative Models via Disentanglement. CoRR abs/2202.00391 (2022) - [i90]Patrick Schramowski, Christopher Tauchmann, Kristian Kersting:
Can Machines Help Us Answering Question 16 in Datasheets, and In Turn Reflecting on Inappropriate Content? CoRR abs/2202.06675 (2022) - [i89]Xuan Xie, Kristian Kersting, Daniel Neider:
Neuro-Symbolic Verification of Deep Neural Networks. CoRR abs/2203.00938 (2022) - [i88]Felix Friedrich, Wolfgang Stammer, Patrick Schramowski, Kristian Kersting:
A Typology to Explore and Guide Explanatory Interactive Machine Learning. CoRR abs/2203.03668 (2022) - [i87]Katharina Hämmerl, Björn Deiseroth, Patrick Schramowski, Jindrich Libovický, Alexander Fraser, Kristian Kersting:
Do Multilingual Language Models Capture Differing Moral Norms? CoRR abs/2203.09904 (2022) - [i86]Matej Zecevic, Florian Peter Busch, Devendra Singh Dhami, Kristian Kersting:
Finding Structure and Causality in Linear Programs. CoRR abs/2203.15274 (2022) - [i85]Nafise Sadat Moosavi, Quentin Delfosse, Kristian Kersting, Iryna Gurevych:
Adaptable Adapters. CoRR abs/2205.01549 (2022) - [i84]Xiaoting Shao, Kristian Kersting:
Gradient-based Counterfactual Explanations using Tractable Probabilistic Models. CoRR abs/2205.07774 (2022) - [i83]David Steinmann, Matej Zecevic, Devendra Singh Dhami, Kristian Kersting:
Machines Explaining Linear Programs. CoRR abs/2206.07194 (2022) - [i82]Jonas Seng, Matej Zecevic, Devendra Singh Dhami, Kristian Kersting:
Tearing Apart NOTEARS: Controlling the Graph Prediction via Variance Manipulation. CoRR abs/2206.07195 (2022) - [i81]Salahedine Youssef, Matej Zecevic, Devendra Singh Dhami, Kristian Kersting:
Towards a Solution to Bongard Problems: A Causal Approach. CoRR abs/2206.07196 (2022) - [i80]Florian Peter Busch, Matej Zecevic, Kristian Kersting, Devendra Singh Dhami:
Attributions Beyond Neural Networks: The Linear Program Case. CoRR abs/2206.07203 (2022) - 2021
- [j58]Nandini Ramanan
, Gautam Kunapuli, Tushar Khot, Bahareh Fatemi, Seyed Mehran Kazemi, David Poole, Kristian Kersting, Sriraam Natarajan:
Structure learning for relational logistic regression: an ensemble approach. Data Min. Knowl. Discov. 35(5): 2089-2111 (2021) - [j57]Niyati Rawal, Dorothea Koert, Cigdem Turan, Kristian Kersting, Jan Peters, Ruth Stock-Homburg:
ExGenNet: Learning to Generate Robotic Facial Expression Using Facial Expression Recognition. Frontiers Robotics AI 8: 730317 (2021) - [j56]Plinio Moreno
, Alexandre Bernardino
, José Santos-Victor
, Rodrigo M. M. Ventura, Kristian Kersting:
Editorial: Robots that Learn and Reason: Towards Learning Logic Rules from Noisy Data. Frontiers Robotics AI 8: 755933 (2021) - [j55]Sophie Burkhardt, Jannis Brugger, Nicolas Wagner, Zahra Ahmadi, Kristian Kersting, Stefan Kramer:
Rule Extraction From Binary Neural Networks With Convolutional Rules for Model Validation. Frontiers Artif. Intell. 4: 642263 (2021) - [c180]Xiaoting Shao, Arseny Skryagin, Wolfgang Stammer, Patrick Schramowski, Kristian Kersting:
Right for Better Reasons: Training Differentiable Models by Constraining their Influence Functions. AAAI 2021: 9533-9540 - [c179]Johannes Czech, Patrick Korus, Kristian Kersting:
Improving AlphaZero Using Monte-Carlo Graph Search. ICAPS 2021: 103-111 - [c178]Wolfgang Stammer, Patrick Schramowski, Kristian Kersting:
Right for the Right Concept: Revising Neuro-Symbolic Concepts by Interacting With Their Explanations. CVPR 2021: 3619-3629 - [c177]Zhongjie Yu, Fabrizio G. Ventola, Kristian Kersting:
Whittle Networks: A Deep Likelihood Model for Time Series. ICML 2021: 12177-12186 - [c176]David Solans, Christopher Tauchmann, Aideen Farrell, Karolin Kappler, Hans-Hendrik Huber, Carlos Castillo, Kristian Kersting:
Learning to Classify Morals and Conventions: Artificial Intelligence in Terms of the Economics of Convention. ICWSM 2021: 691-702 - [c175]Fabrizio Ventola, Devendra Singh Dhami, Kristian Kersting:
Generative Clausal Networks: Relational Decision Trees as Probabilistic Circuits. ILP 2021: 251-265 - [c174]Matej Zecevic, Devendra Singh Dhami, Athresh Karanam, Sriraam Natarajan, Kristian Kersting:
Interventional Sum-Product Networks: Causal Inference with Tractable Probabilistic Models. NeurIPS 2021: 15019-15031 - [c173]Zhongjie Yu, Mingye Zhu, Martin Trapp, Arseny Skryagin, Kristian Kersting:
Leveraging probabilistic circuits for nonparametric multi-output regression. UAI 2021: 2008-2018 - [e12]Frank Hutter
, Kristian Kersting
, Jefrey Lijffijt
, Isabel Valera
:
Machine Learning and Knowledge Discovery in Databases - European Conference, ECML PKDD 2020, Ghent, Belgium, September 14-18, 2020, Proceedings, Part I. Lecture Notes in Computer Science 12457, Springer 2021, ISBN 978-3-030-67657-5 [contents] - [e11]Frank Hutter
, Kristian Kersting
, Jefrey Lijffijt
, Isabel Valera
:
Machine Learning and Knowledge Discovery in Databases - European Conference, ECML PKDD 2020, Ghent, Belgium, September 14-18, 2020, Proceedings, Part II. Lecture Notes in Computer Science 12458, Springer 2021, ISBN 978-3-030-67660-5 [contents] - [e10]Frank Hutter
, Kristian Kersting
, Jefrey Lijffijt
, Isabel Valera
:
Machine Learning and Knowledge Discovery in Databases - European Conference, ECML PKDD 2020, Ghent, Belgium, September 14-18, 2020, Proceedings, Part III. Lecture Notes in Computer Science 12459, Springer 2021, ISBN 978-3-030-67663-6 [contents] - [i79]Quentin Delfosse, Patrick Schramowski, Alejandro Molina, Kristian Kersting:
Recurrent Rational Networks. CoRR abs/2102.09407 (2021) - [i78]Matej Zecevic, Devendra Singh Dhami, Athresh Karanam, Sriraam Natarajan, Kristian Kersting:
Interventional Sum-Product Networks: Causal Inference with Tractable Probabilistic Models. CoRR abs/2102.10440 (2021) - [i77]Patrick Schramowski, Cigdem Turan, Nico Andersen, Constantin A. Rothkopf, Kristian Kersting:
Language Models have a Moral Dimension. CoRR abs/2103.11790 (2021) - [i76]Karl Stelzner, Kristian Kersting, Adam R. Kosiorek:
Decomposing 3D Scenes into Objects via Unsupervised Volume Segmentation. CoRR abs/2104.01148 (2021) - [i75]Aidmar Wainakh, Fabrizio Ventola, Till Müßig, Jens Keim
, Carlos Garcia Cordero, Ephraim Zimmer, Tim Grube, Kristian Kersting, Max Mühlhäuser:
User Label Leakage from Gradients in Federated Learning. CoRR abs/2105.09369 (2021) - [i74]Matej Zecevic, Devendra Singh Dhami, Kristian Kersting:
Intriguing Parameters of Structural Causal Models. CoRR abs/2105.12697 (2021) - [i73]Nils Thoma, Zhongjie Yu, Fabrizio Ventola, Kristian Kersting:
RECOWNs: Probabilistic Circuits for Trustworthy Time Series Forecasting. CoRR abs/2106.04148 (2021) - [i72]Zhongjie Yu, Mingye Zhu, Martin Trapp, Arseny Skryagin, Kristian Kersting:
Leveraging Probabilistic Circuits for Nonparametric Multi-Output Regression. CoRR abs/2106.08687 (2021) - [i71]Maximilian Otte, Quentin Delfosse, Johannes Czech, Kristian Kersting:
Generative Adversarial Neural Cellular Automata. CoRR abs/2108.04328 (2021) - [i70]Matej Zecevic, Devendra Singh Dhami, Petar Velickovic, Kristian Kersting:
Relating Graph Neural Networks to Structural Causal Models. CoRR abs/2109.04173 (2021) - [i69]Steven Lang, Fabrizio Ventola, Kristian Kersting:
DAFNe: A One-Stage Anchor-Free Deep Model for Oriented Object Detection. CoRR abs/2109.06148 (2021) - [i68]Zhongjie Yu, Devendra Singh Dhami, Kristian Kersting:
Sum-Product-Attention Networks: Leveraging Self-Attention in Probabilistic Circuits. CoRR abs/2109.06587 (2021) - [i67]Patrick Schramowski, Felix Friedrich, Christopher Tauchmann, Kristian Kersting:
Interactively Generating Explanations for Transformer Language Models. CoRR abs/2110.02058 (2021) - [i66]Matej Zecevic, Devendra Singh Dhami, Constantin A. Rothkopf, Kristian Kersting:
Structural Causal Interpretation Theorem. CoRR abs/2110.02395 (2021) - [i65]Martin Mundt, Steven Lang, Quentin Delfosse, Kristian Kersting:
CLEVA-Compass: A Continual Learning EValuation Assessment Compass to Promote Research Transparency and Comparability. CoRR abs/2110.03331 (2021) - [i64]Arseny Skryagin, Wolfgang Stammer, Daniel Ochs, Devendra Singh Dhami, Kristian Kersting:
SLASH: Embracing Probabilistic Circuits into Neural Answer Set Programming. CoRR abs/2110.03395 (2021) - [i63]Patrick Schramowski, Kristian Kersting:
Inferring Offensiveness In Images From Natural Language Supervision. CoRR abs/2110.04222 (2021) - [i62]Hikaru Shindo, Devendra Singh Dhami, Kristian Kersting:
Neuro-Symbolic Forward Reasoning. CoRR abs/2110.09383 (2021) - [i61]Athresh Karanam, Saurabh Mathur, Predrag Radivojac, Kristian Kersting, Sriraam Natarajan:
Explaining Deep Tractable Probabilistic Models: The sum-product network case. CoRR abs/2110.09778 (2021) - [i60]Matej Zecevic, Devendra Singh Dhami, Kristian Kersting:
On the Tractability of Neural Causal Inference. CoRR abs/2110.12052 (2021) - [i59]Moritz Willig, Matej Zecevic, Devendra Singh Dhami, Kristian Kersting:
The Causal Loss: Driving Correlation to Imply Causation. CoRR abs/2110.12066 (2021) - [i58]Lukas Struppek, Dominik Hintersdorf, Daniel Neider, Kristian Kersting:
Learning to Break Deep Perceptual Hashing: The Use Case NeuralHash. CoRR abs/2111.06628 (2021) - [i57]Dominik Hintersdorf, Lukas Struppek, Kristian Kersting:
Do Not Trust Prediction Scores for Membership Inference Attacks. CoRR abs/2111.09076 (2021) - [i56]Wolfgang Stammer, Marius Memmel, Patrick Schramowski, Kristian Kersting:
Interactive Disentanglement: Learning Concepts by Interacting with their Prototype Representations. CoRR abs/2112.02290 (2021) - 2020
- [j54]Xiaoting Shao
, Tjitze Rienstra, Matthias Thimm, Kristian Kersting:
Towards Understanding and Arguing with Classifiers: Recent Progress. Datenbank-Spektrum 20(2): 171-180 (2020) - [j53]Johannes Czech, Moritz Willig, Alena Beyer, Kristian Kersting, Johannes Fürnkranz:
Learning to Play the Chess Variant Crazyhouse Above World Champion Level With Deep Neural Networks and Human Data. Frontiers Artif. Intell. 3: 24 (2020) - [j52]Patrick Schramowski, Cigdem Turan, Sophie F. Jentzsch
, Constantin A. Rothkopf
, Kristian Kersting:
The Moral Choice Machine. Frontiers Artif. Intell. 3: 36 (2020) - [j51]Rudolf Lioutikov
, Guilherme Maeda, Filipe Veiga
, Kristian Kersting, Jan Peters:
Learning attribute grammars for movement primitive sequencing. Int. J. Robotics Res. 39(1) (2020) - [j50]Rafet Sifa, Raheel Yawar, Rajkumar Ramamurthy, Christian Bauckhage
, Kristian Kersting:
Matrix- and Tensor Factorization for Game Content Recommendation. Künstliche Intell. 34(1): 57-67 (2020) - [j49]Kristian Kersting:
Rethinking Computer Science Through AI. Künstliche Intell. 34(4): 435-437 (2020) - [j48]Patrick Schramowski
, Wolfgang Stammer
, Stefano Teso, Anna Brugger, Franziska Herbert, Xiaoting Shao, Hans-Georg Luigs, Anne-Katrin Mahlein, Kristian Kersting
:
Making deep neural networks right for the right scientific reasons by interacting with their explanations. Nat. Mach. Intell. 2(8): 476-486 (2020) - [j47]Benjamin Hilprecht, Andreas Schmidt, Moritz Kulessa
, Alejandro Molina, Kristian Kersting, Carsten Binnig:
DeepDB: Learn from Data, not from Queries! Proc. VLDB Endow. 13(7): 992-1005 (2020) - [c172]Amos Treiber, Alejandro Molina, Christian Weinert, Thomas Schneider
, Kristian Kersting:
CryptoSPN: Expanding PPML beyond Neural Networks. PPMLP@CCS 2020: 9-14 - [c171]Amos Treiber, Alejandro Molina, Christian Weinert, Thomas Schneider
, Kristian Kersting:
CryptoSPN: Privacy-Preserving Sum-Product Network Inference. ECAI 2020: 1946-1953 - [c170]Ute Schmid, Volker Tresp, Matthias Bethge, Kristian Kersting, Rainer Stiefelhagen:
Künstliche Intelligenz - Die dritte Welle. GI-Jahrestagung 2020: 91-95 - [c169]Alejandro Molina, Patrick Schramowski, Kristian Kersting:
Padé Activation Units: End-to-end Learning of Flexible Activation Functions in Deep Networks. ICLR 2020 - [c168]Jannik Kossen, Karl Stelzner, Marcel Hussing, Claas Voelcker, Kristian Kersting:
Structured Object-Aware Physics Prediction for Video Modeling and Planning. ICLR 2020 - [c167]Cigdem Turan
, Patrick Schramowski, Constantin A. Rothkopf
, Kristian Kersting:
Alfie: An Interactive Robot with Moral Compass. ICMI 2020: 758-759 - [c166]Robert Peharz, Steven Lang, Antonio Vergari, Karl Stelzner, Alejandro Molina, Martin Trapp, Guy Van den Broeck, Kristian Kersting, Zoubin Ghahramani:
Einsum Networks: Fast and Scalable Learning of Tractable Probabilistic Circuits. ICML 2020: 7563-7574 - [c165]Matej Petkovic
, Michelangelo Ceci
, Kristian Kersting
, Saso Dzeroski
:
Estimating the Importance of Relational Features by Using Gradient Boosting. ISMIS 2020: 362-371 - [c164]Tjitze Rienstra, Matthias Thimm, Kristian Kersting, Xiaoting Shao:
Independence and D-separation in Abstract Argumentation. KR 2020: 713-722 - [c163]Kristian Kersting:
On Hybrid and Systems AI. LWDA 2020: 3 - [c162]Nandini Ramanan, Mayukh Das, Kristian Kersting, Sriraam Natarajan:
Discriminative Non-Parametric Learning of Arithmetic Circuits. PGM 2020: 353-364 - [c161]Xiaoting Shao, Alejandro Molina, Antonio Vergari, Karl Stelzner, Robert Peharz, Thomas Liebig, Kristian Kersting:
Conditional Sum-Product Networks: Imposing Structure on Deep Probabilistic Architectures. PGM 2020: 401-412 - [c160]Fabrizio Ventola, Karl Stelzner, Alejandro Molina, Kristian Kersting:
Residual Sum-Product Networks. PGM 2020: 545-556 - [c159]Xiaoting Shao, Zhongjie Yu, Arseny Skryagin, Tjitze Rienstra, Matthias Thimm, Kristian Kersting:
Modelling Multivariate Ranking Functions with Min-Sum Networks. SUM 2020: 281-288 - [i55]Patrick Schramowski, Wolfgang Stammer, Stefano Teso, Anna Brugger, Xiaoting Shao, Hans-Georg Luigs, Anne-Katrin Mahlein, Kristian Kersting:
Right for the Wrong Scientific Reasons: Revising Deep Networks by Interacting with their Explanations. CoRR abs/2001.05371 (2020) - [i54]Amos Treiber, Alejandro Molina, Christian Weinert, Thomas Schneider, Kristian Kersting:
CryptoSPN: Privacy-preserving Sum-Product Network Inference. CoRR abs/2002.00801 (2020) - [i53]Robert Peharz, Steven Lang, Antonio Vergari, Karl Stelzner, Alejandro Molina, Martin Trapp, Guy Van den Broeck, Kristian Kersting, Zoubin Ghahramani:
Einsum Networks: Fast and Scalable Learning of Tractable Probabilistic Circuits. CoRR abs/2004.06231 (2020) - [i52]Srijita Das, Sriraam Natarajan, Kaushik Roy, Ronald Parr, Kristian Kersting:
Fitted Q-Learning for Relational Domains. CoRR abs/2006.05595 (2020) - [i51]Christopher Morris, Nils M. Kriege
, Franka Bause, Kristian Kersting, Petra Mutzel, Marion Neumann:
TUDataset: A collection of benchmark datasets for learning with graphs. CoRR abs/2007.08663 (2020) - [i50]Cigdem Turan, Patrick Schramowski, Constantin A. Rothkopf, Kristian Kersting:
Alfie: An Interactive Robot with a Moral Compass. CoRR abs/2009.05349 (2020) - [i49]Wolfgang Stammer, Patrick Schramowski, Kristian Kersting:
Right for the Right Concept: Revising Neuro-Symbolic Concepts by Interacting with their Explanations. CoRR abs/2011.12854 (2020) - [i48]Sophie Burkhardt, Jannis Brugger, Nicolas Wagner, Zahra Ahmadi, Kristian Kersting, Stefan Kramer:
Rule Extraction from Binary Neural Networks with Convolutional Rules for Model Validation. CoRR abs/2012.08459 (2020) - [i47]Johannes Czech, Patrick Korus, Kristian Kersting:
Monte-Carlo Graph Search for AlphaZero. CoRR abs/2012.11045 (2020) - [i46]Kristian Kersting, Miryung Kim, Guy Van den Broeck, Thomas Zimmermann:
SE4ML - Software Engineering for AI-ML-based Systems (Dagstuhl Seminar 20091). Dagstuhl Reports 10(2): 76-87 (2020)
2010 – 2019
- 2019
- [j46]Laura Antanas
, Plinio Moreno
, Marion Neumann, Rui Pimentel de Figueiredo
, Kristian Kersting, José Santos-Victor
, Luc De Raedt
:
Semantic and geometric reasoning for robotic grasping: a probabilistic logic approach. Auton. Robots 43(6): 1393-1418 (2019) - [j45]Nils M. Kriege
, Marion Neumann, Christopher Morris
, Kristian Kersting, Petra Mutzel:
A unifying view of explicit and implicit feature maps of graph kernels. Data Min. Knowl. Discov. 33(6): 1505-1547 (2019) - [j44]Andrea Galassi
, Kristian Kersting, Marco Lippi, Xiaoting Shao, Paolo Torroni
:
Neural-Symbolic Argumentation Mining: An Argument in Favor of Deep Learning and Reasoning. Frontiers Big Data 2: 52 (2019) - [j43]Fabrizio Riguzzi, Kristian Kersting, Marco Lippi, Sriraam Natarajan:
Editorial: Statistical Relational Artificial Intelligence. Frontiers Robotics AI 6: 68 (2019) - [j42]Anna Brugger, Jan Behmann, Stefan Paulus, Hans-Georg Luigs, Matheus Thomas Kuska, Patrick Schramowski, Kristian Kersting, Ulrike Steiner, Anne-Katrin Mahlein:
Extending Hyperspectral Imaging for Plant Phenotyping to the UV-Range. Remote. Sens. 11(12): 1401 (2019) - [c158]Antonio Vergari, Alejandro Molina
, Robert Peharz
, Zoubin Ghahramani, Kristian Kersting, Isabel Valera:
Automatic Bayesian Density Analysis. AAAI 2019: 5207-5215 - [c157]Mayukh Das, Devendra Singh Dhami, Gautam Kunapuli, Kristian Kersting, Sriraam Natarajan:
Fast Relational Probabilistic Inference and Learning: Approximate Counting via Hypergraphs. AAAI 2019: 7816-7824 - [c156]Sophie F. Jentzsch
, Patrick Schramowski, Constantin A. Rothkopf
, Kristian Kersting:
Semantics Derived Automatically from Language Corpora Contain Human-like Moral Choices. AIES 2019: 37-44 - [c155]Stefano Teso, Kristian Kersting:
Explanatory Interactive Machine Learning. AIES 2019: 239-245 - [c154]Lukas Weber, Lukas Sommer
, Julian Oppermann, Alejandro Molina
, Kristian Kersting, Andreas Koch:
Resource-Efficient Logarithmic Number Scale Arithmetic for SPN Inference on FPGAs. FPT 2019: 251-254 - [c153]Karl Stelzner, Robert Peharz, Kristian Kersting:
Faster Attend-Infer-Repeat with Tractable Probabilistic Models. ICML 2019: 5966-5975 - [c152]Navdeep Kaur, Gautam Kunapuli, Saket Joshi, Kristian Kersting, Sriraam Natarajan:
Neural Networks for Relational Data. ILP 2019: 62-71 - [c151]Stefan Lüdtke, Alejandro Molina, Kristian Kersting, Thomas Kirste:
Gaussian Lifted Marginal Filtering. KI 2019: 230-243 - [c150]Claas Völcker, Alejandro Molina, Johannes Neumann, Dirk Westermann, Kristian Kersting:
DeepNotebooks: Deep Probabilistic Models Construct Python Notebooks for Reporting Datasets. PKDD/ECML Workshops (1) 2019: 28-43 - [c149]Robert Peharz, Antonio Vergari, Karl Stelzner, Alejandro Molina
, Martin Trapp, Xiaoting Shao, Kristian Kersting, Zoubin Ghahramani:
Random Sum-Product Networks: A Simple and Effective Approach to Probabilistic Deep Learning. UAI 2019: 334-344 - [i45]Alejandro Molina, Antonio Vergari, Karl Stelzner, Robert Peharz, Pranav Subramani, Nicola Di Mauro, Pascal Poupart, Kristian Kersting:
SPFlow: An Easy and Extensible Library for Deep Probabilistic Learning using Sum-Product Networks. CoRR abs/1901.03704 (2019) - [i44]Kristian Kersting, Jan Peters, Constantin A. Rothkopf:
Was ist eine Professur fuer Kuenstliche Intelligenz? CoRR abs/1903.09516 (2019) - [i43]Xiaoting Shao, Alejandro Molina, Antonio Vergari, Karl Stelzner, Robert Peharz, Thomas Liebig, Kristian Kersting:
Conditional Sum-Product Networks: Imposing Structure on Deep Probabilistic Architectures. CoRR abs/1905.08550 (2019) - [i42]Andrea Galassi
, Kristian Kersting, Marco Lippi, Xiaoting Shao, Paolo Torroni:
Neural-Symbolic Argumentation Mining: an Argument in Favour of Deep Learning and Reasoning. CoRR abs/1905.09103 (2019) - [i41]Parisa Kordjamshidi, Dan Roth, Kristian Kersting:
Declarative Learning-Based Programming as an Interface to AI Systems. CoRR abs/1906.07809 (2019) - [i40]Alejandro Molina, Patrick Schramowski, Kristian Kersting:
Padé Activation Units: End-to-end Learning of Flexible Activation Functions in Deep Networks. CoRR abs/1907.06732 (2019) - [i39]Fabrizio Ventola, Karl Stelzner, Alejandro Molina, Kristian Kersting:
Random Sum-Product Forests with Residual Links. CoRR abs/1908.03250 (2019) - [i38]Johannes Czech, Moritz Willig, Alena Beyer, Kristian Kersting, Johannes Fürnkranz:
Learning to play the Chess Variant Crazyhouse above World Champion Level with Deep Neural Networks and Human Data. CoRR abs/1908.06660 (2019) - [i37]Benjamin Hilprecht, Andreas Schmidt, Moritz Kulessa
, Alejandro Molina, Kristian Kersting, Carsten Binnig:
DeepDB: Learn from Data, not from Queries! CoRR abs/1909.00607 (2019) - [i36]Navdeep Kaur, Gautam Kunapuli, Saket Joshi, Kristian Kersting, Sriraam Natarajan:
Neural Networks for Relational Data. CoRR abs/1909.04723 (2019) - [i35]Jannik Kossen, Karl Stelzner, Marcel Hussing, Claas Voelcker, Kristian Kersting:
Structured Object-Aware Physics Prediction for Video Modeling and Planning. CoRR abs/1910.02425 (2019) - [i34]Patrick Schramowski, Cigdem Turan, Sophie F. Jentzsch, Constantin A. Rothkopf, Kristian Kersting:
BERT has a Moral Compass: Improvements of ethical and moral values of machines. CoRR abs/1912.05238 (2019) - [i33]Michael Benedikt, Kristian Kersting, Phokion G. Kolaitis, Daniel Neider:
Logic and Learning (Dagstuhl Seminar 19361). Dagstuhl Reports 9(9): 1-22 (2019) - 2018
- [j41]Kristian Kersting:
Machine Learning and Artificial Intelligence: Two Fellow Travelers on the Quest for Intelligent Behavior in Machines. Frontiers Big Data 1: 6 (2018) - [j40]