


Остановите войну!
for scientists:


default search action
Alessandro Lazaric
Person information

Refine list

refinements active!
zoomed in on ?? of ?? records
view refined list in
export refined list as
showing all ?? records
2020 – today
- 2023
- [i68]Lina Mezghani, Sainbayar Sukhbaatar, Piotr Bojanowski, Alessandro Lazaric, Karteek Alahari:
Learning Goal-Conditioned Policies Offline with Self-Supervised Reward Shaping. CoRR abs/2301.02099 (2023) - 2022
- [j7]Rui Yuan
, Alessandro Lazaric, Robert M. Gower
:
Sketched Newton-Raphson. SIAM J. Optim. 32(3): 1555-1583 (2022) - [c98]Rui Yuan, Robert M. Gower, Alessandro Lazaric:
A general sample complexity analysis of vanilla policy gradient. AISTATS 2022: 3332-3380 - [c97]Evrard Garcelon, Vashist Avadhanula, Alessandro Lazaric, Matteo Pirotta:
Top K Ranking for Multi-Armed Bandit with Noisy Evaluations. AISTATS 2022: 6242-6269 - [c96]Jean Tarbouriech, Omar Darwiche Domingues, Pierre Ménard, Matteo Pirotta, Michal Valko, Alessandro Lazaric:
Adaptive Multi-Goal Exploration. AISTATS 2022: 7349-7383 - [c95]Pierre-Alexandre Kamienny, Jean Tarbouriech, Sylvain Lamprier, Alessandro Lazaric, Ludovic Denoyer:
Direct then Diffuse: Incremental Unsupervised Skill Discovery for State Covering and Goal Reaching. ICLR 2022 - [c94]Yunchang Yang, Tianhao Wu, Han Zhong, Evrard Garcelon, Matteo Pirotta, Alessandro Lazaric, Liwei Wang, Simon Shaolei Du:
A Reduction-Based Framework for Conservative Bandits and Reinforcement Learning. ICLR 2022 - [c93]Denis Yarats, Rob Fergus, Alessandro Lazaric, Lerrel Pinto:
Mastering Visual Continuous Control: Improved Data-Augmented Reinforcement Learning. ICLR 2022 - [c92]Daniele Calandriello, Luigi Carratino, Alessandro Lazaric, Michal Valko, Lorenzo Rosasco:
Scaling Gaussian Process Optimization by Evaluating a Few Unique Candidates Multiple Times. ICML 2022: 2523-2541 - [c91]Akram Erraqabi, Marlos C. Machado, Mingde Zhao, Sainbayar Sukhbaatar, Alessandro Lazaric, Ludovic Denoyer, Yoshua Bengio:
Temporal abstractions-augmented temporally contrastive learning: An alternative to the Laplacian in RL. UAI 2022: 641-651 - [i67]Daniele Calandriello, Luigi Carratino, Alessandro Lazaric, Michal Valko, Lorenzo Rosasco:
Scaling Gaussian Process Optimization by Evaluating a Few Unique Candidates Multiple Times. CoRR abs/2201.12909 (2022) - [i66]Denis Yarats, David Brandfonbrener, Hao Liu, Michael Laskin, Pieter Abbeel, Alessandro Lazaric, Lerrel Pinto:
Don't Change the Algorithm, Change the Data: Exploratory Data for Offline Reinforcement Learning. CoRR abs/2201.13425 (2022) - [i65]Akram Erraqabi, Marlos C. Machado, Mingde Zhao, Sainbayar Sukhbaatar, Alessandro Lazaric, Ludovic Denoyer, Yoshua Bengio:
Temporal Abstractions-Augmented Temporally Contrastive Learning: An Alternative to the Laplacian in RL. CoRR abs/2203.11369 (2022) - [i64]Rui Yuan, Simon S. Du, Robert M. Gower, Alessandro Lazaric, Lin Xiao:
Linear Convergence of Natural Policy Gradient Methods with Log-Linear Policies. CoRR abs/2210.01400 (2022) - [i63]Liyu Chen, Andrea Tirinzoni, Matteo Pirotta, Alessandro Lazaric:
Reaching Goals is Hard: Settling the Sample Complexity of the Stochastic Shortest Path. CoRR abs/2210.04946 (2022) - [i62]Virginie Do, Elvis Dohmatob, Matteo Pirotta, Alessandro Lazaric, Nicolas Usunier:
Contextual bandits with concave rewards, and an application to fair ranking. CoRR abs/2210.09957 (2022) - [i61]Andrea Tirinzoni, Matteo Papini, Ahmed Touati, Alessandro Lazaric, Matteo Pirotta:
Scalable Representation Learning in Linear Contextual Bandits with Constant Regret Guarantees. CoRR abs/2210.13083 (2022) - [i60]Yifang Chen, Karthik Abinav Sankararaman, Alessandro Lazaric, Matteo Pirotta, Dmytro Karamshuk, Qifan Wang, Karishma Mandyam, Sinong Wang, Han Fang:
Improved Adaptive Algorithm for Scalable Active Learning with Weak Labeler. CoRR abs/2211.02233 (2022) - [i59]Andrea Tirinzoni, Matteo Pirotta, Alessandro Lazaric:
On the Complexity of Representation Learning in Contextual Linear Bandits. CoRR abs/2212.09429 (2022) - 2021
- [c90]Jean Tarbouriech, Matteo Pirotta, Michal Valko, Alessandro Lazaric:
Sample Complexity Bounds for Stochastic Shortest Path with a Generative Model. ALT 2021: 1157-1178 - [c89]Matteo Papini, Andrea Tirinzoni, Marcello Restelli, Alessandro Lazaric, Matteo Pirotta:
Leveraging Good Representations in Linear Contextual Bandits. ICML 2021: 8371-8380 - [c88]Denis Yarats, Rob Fergus, Alessandro Lazaric, Lerrel Pinto:
Reinforcement Learning with Prototypical Representations. ICML 2021: 11920-11931 - [c87]Jean Tarbouriech, Runlong Zhou, Simon S. Du, Matteo Pirotta, Michal Valko, Alessandro Lazaric:
Stochastic Shortest Path: Minimax, Parameter-Free and Towards Horizon-Free Regret. NeurIPS 2021: 6843-6855 - [c86]Jean Tarbouriech, Matteo Pirotta, Michal Valko, Alessandro Lazaric:
A Provably Efficient Sample Collection Strategy for Reinforcement Learning. NeurIPS 2021: 7611-7624 - [c85]Matteo Papini, Andrea Tirinzoni, Aldo Pacchiano, Marcello Restelli, Alessandro Lazaric, Matteo Pirotta:
Reinforcement Learning in Linear MDPs: Constant Regret and Representation Selection. NeurIPS 2021: 16371-16383 - [i58]Denis Yarats, Rob Fergus, Alessandro Lazaric, Lerrel Pinto:
Reinforcement Learning with Prototypical Representations. CoRR abs/2102.11271 (2021) - [i57]Matteo Papini, Andrea Tirinzoni, Marcello Restelli, Alessandro Lazaric, Matteo Pirotta:
Leveraging Good Representations in Linear Contextual Bandits. CoRR abs/2104.03781 (2021) - [i56]Jean Tarbouriech, Runlong Zhou, Simon S. Du, Matteo Pirotta, Michal Valko, Alessandro Lazaric:
Stochastic Shortest Path: Minimax, Parameter-Free and Towards Horizon-Free Regret. CoRR abs/2104.11186 (2021) - [i55]Yunchang Yang, Tianhao Wu, Han Zhong, Evrard Garcelon, Matteo Pirotta, Alessandro Lazaric, Liwei Wang, Simon S. Du:
A Unified Framework for Conservative Exploration. CoRR abs/2106.11692 (2021) - [i54]Andrea Tirinzoni, Matteo Pirotta, Alessandro Lazaric:
A Fully Problem-Dependent Regret Lower Bound for Finite-Horizon MDPs. CoRR abs/2106.13013 (2021) - [i53]Denis Yarats, Rob Fergus, Alessandro Lazaric, Lerrel Pinto:
Mastering Visual Continuous Control: Improved Data-Augmented Reinforcement Learning. CoRR abs/2107.09645 (2021) - [i52]Rui Yuan
, Robert M. Gower, Alessandro Lazaric:
A general sample complexity analysis of vanilla policy gradient. CoRR abs/2107.11433 (2021) - [i51]Pierre-Alexandre Kamienny, Jean Tarbouriech, Alessandro Lazaric, Ludovic Denoyer:
Direct then Diffuse: Incremental Unsupervised Skill Discovery for State Covering and Goal Reaching. CoRR abs/2110.14457 (2021) - [i50]Matteo Papini, Andrea Tirinzoni, Aldo Pacchiano, Marcello Restelli, Alessandro Lazaric, Matteo Pirotta:
Reinforcement Learning in Linear MDPs: Constant Regret and Representation Selection. CoRR abs/2110.14798 (2021) - [i49]Jean Tarbouriech, Omar Darwiche Domingues, Pierre Ménard, Matteo Pirotta, Michal Valko, Alessandro Lazaric:
Adaptive Multi-Goal Exploration. CoRR abs/2111.12045 (2021) - [i48]Paul Luyo, Evrard Garcelon, Alessandro Lazaric, Matteo Pirotta:
Differentially Private Exploration in Reinforcement Learning with Linear Representation. CoRR abs/2112.01585 (2021) - [i47]Evrard Garcelon, Vashist Avadhanula, Alessandro Lazaric, Matteo Pirotta:
Top K Ranking for Multi-Armed Bandit with Noisy Evaluations. CoRR abs/2112.06517 (2021) - 2020
- [c84]Evrard Garcelon, Mohammad Ghavamzadeh, Alessandro Lazaric, Matteo Pirotta:
Improved Algorithms for Conservative Exploration in Bandits. AAAI 2020: 3962-3969 - [c83]Evrard Garcelon, Mohammad Ghavamzadeh, Alessandro Lazaric, Matteo Pirotta:
Conservative Exploration in Reinforcement Learning. AISTATS 2020: 1431-1441 - [c82]Andrea Zanette, David Brandfonbrener, Emma Brunskill, Matteo Pirotta, Alessandro Lazaric:
Frequentist Regret Bounds for Randomized Least-Squares Value Iteration. AISTATS 2020: 1954-1964 - [c81]Andrea Tirinzoni, Alessandro Lazaric, Marcello Restelli:
A Novel Confidence-Based Algorithm for Structured Bandits. AISTATS 2020: 3175-3185 - [c80]Julien Seznec, Pierre Ménard, Alessandro Lazaric, Michal Valko:
A single algorithm for both restless and rested rotting bandits. AISTATS 2020: 3784-3794 - [c79]Marc Abeille, Alessandro Lazaric:
Efficient Optimistic Exploration in Linear-Quadratic Regulators via Lagrangian Relaxation. ICML 2020: 23-31 - [c78]Daniele Calandriello, Luigi Carratino, Alessandro Lazaric, Michal Valko, Lorenzo Rosasco:
Near-linear time Gaussian process optimization with adaptive batching and resparsification. ICML 2020: 1295-1305 - [c77]Leonardo Cella, Alessandro Lazaric, Massimiliano Pontil:
Meta-learning with Stochastic Linear Bandits. ICML 2020: 1360-1370 - [c76]Jean Tarbouriech, Evrard Garcelon, Michal Valko, Matteo Pirotta, Alessandro Lazaric:
No-Regret Exploration in Goal-Oriented Reinforcement Learning. ICML 2020: 9428-9437 - [c75]Andrea Zanette, Alessandro Lazaric, Mykel J. Kochenderfer, Emma Brunskill:
Learning Near Optimal Policies with Low Inherent Bellman Error. ICML 2020: 10978-10989 - [c74]Evrard Garcelon, Baptiste Rozière, Laurent Meunier, Jean Tarbouriech, Olivier Teytaud, Alessandro Lazaric, Matteo Pirotta:
Adversarial Attacks on Linear Contextual Bandits. NeurIPS 2020 - [c73]Jean Tarbouriech, Matteo Pirotta, Michal Valko, Alessandro Lazaric:
Improved Sample Complexity for Incremental Autonomous Exploration in MDPs. NeurIPS 2020 - [c72]Andrea Tirinzoni, Matteo Pirotta, Marcello Restelli, Alessandro Lazaric:
An Asymptotically Optimal Primal-Dual Incremental Algorithm for Contextual Linear Bandits. NeurIPS 2020 - [c71]Andrea Zanette, Alessandro Lazaric, Mykel J. Kochenderfer, Emma Brunskill:
Provably Efficient Reward-Agnostic Navigation with Linear Value Iteration. NeurIPS 2020 - [c70]Jean Tarbouriech, Shubhanshu Shekhar, Matteo Pirotta, Mohammad Ghavamzadeh, Alessandro Lazaric:
Active Model Estimation in Markov Decision Processes. UAI 2020: 1019-1028 - [i46]Jian Qian, Ronan Fruit, Matteo Pirotta, Alessandro Lazaric:
Concentration Inequalities for Multinoulli Random Variables. CoRR abs/2001.11595 (2020) - [i45]Evrard Garcelon, Mohammad Ghavamzadeh, Alessandro Lazaric, Matteo Pirotta:
Conservative Exploration in Reinforcement Learning. CoRR abs/2002.03218 (2020) - [i44]Evrard Garcelon, Mohammad Ghavamzadeh, Alessandro Lazaric, Matteo Pirotta:
Improved Algorithms for Conservative Exploration in Bandits. CoRR abs/2002.03221 (2020) - [i43]Evrard Garcelon, Baptiste Rozière, Laurent Meunier, Jean Tarbouriech, Olivier Teytaud, Alessandro Lazaric, Matteo Pirotta:
Adversarial Attacks on Linear Contextual Bandits. CoRR abs/2002.03839 (2020) - [i42]Daniele Calandriello, Luigi Carratino
, Alessandro Lazaric, Michal Valko, Lorenzo Rosasco:
Near-linear Time Gaussian Process Optimization with Adaptive Batching and Resparsification. CoRR abs/2002.09954 (2020) - [i41]Andrea Zanette, Alessandro Lazaric, Mykel J. Kochenderfer, Emma Brunskill:
Learning Near Optimal Policies with Low Inherent Bellman Error. CoRR abs/2003.00153 (2020) - [i40]Jean Tarbouriech, Shubhanshu Shekhar, Matteo Pirotta, Mohammad Ghavamzadeh, Alessandro Lazaric:
Active Model Estimation in Markov Decision Processes. CoRR abs/2003.03297 (2020) - [i39]Pierre-Alexandre Kamienny, Matteo Pirotta, Alessandro Lazaric, Thibault Lavril, Nicolas Usunier, Ludovic Denoyer:
Learning Adaptive Exploration Strategies in Dynamic Environments Through Informed Policy Regularization. CoRR abs/2005.02934 (2020) - [i38]Leonardo Cella, Alessandro Lazaric, Massimiliano Pontil:
Meta-learning with Stochastic Linear Bandits. CoRR abs/2005.08531 (2020) - [i37]Andrea Tirinzoni, Alessandro Lazaric, Marcello Restelli:
A Novel Confidence-Based Algorithm for Structured Bandits. CoRR abs/2005.11593 (2020) - [i36]Rui Yuan
, Alessandro Lazaric, Robert M. Gower:
Sketched Newton-Raphson. CoRR abs/2006.12120 (2020) - [i35]Ronan Fruit, Matteo Pirotta, Alessandro Lazaric:
Improved Analysis of UCRL2 with Empirical Bernstein Inequality. CoRR abs/2007.05456 (2020) - [i34]Jean Tarbouriech, Matteo Pirotta, Michal Valko, Alessandro Lazaric:
A Provably Efficient Sample Collection Strategy for Reinforcement Learning. CoRR abs/2007.06437 (2020) - [i33]Marc Abeille, Alessandro Lazaric:
Efficient Optimistic Exploration in Linear-Quadratic Regulators via Lagrangian Relaxation. CoRR abs/2007.06482 (2020) - [i32]Andrea Zanette, Alessandro Lazaric, Mykel J. Kochenderfer, Emma Brunskill:
Provably Efficient Reward-Agnostic Navigation with Linear Value Iteration. CoRR abs/2008.07737 (2020) - [i31]Andrea Tirinzoni, Matteo Pirotta, Marcello Restelli, Alessandro Lazaric:
An Asymptotically Optimal Primal-Dual Incremental Algorithm for Contextual Linear Bandits. CoRR abs/2010.12247 (2020) - [i30]Jean Tarbouriech, Matteo Pirotta, Michal Valko, Alessandro Lazaric:
Improved Sample Complexity for Incremental Autonomous Exploration in MDPs. CoRR abs/2012.14755 (2020)
2010 – 2019
- 2019
- [c69]Rahma Chaabouni, Eugene Kharitonov, Alessandro Lazaric, Emmanuel Dupoux, Marco Baroni:
Word-order Biases in Deep-agent Emergent Communication. ACL (1) 2019: 5166-5175 - [c68]Jean Tarbouriech, Alessandro Lazaric:
Active Exploration in Markov Decision Processes. AISTATS 2019: 974-982 - [c67]Julien Seznec, Andrea Locatelli, Alexandra Carpentier, Alessandro Lazaric, Michal Valko:
Rotting bandits are no harder than stochastic ones. AISTATS 2019: 2564-2572 - [c66]Daniele Calandriello, Luigi Carratino, Alessandro Lazaric, Michal Valko, Lorenzo Rosasco:
Gaussian Process Optimization with Adaptive Sketching: Scalable and No Regret. COLT 2019: 533-557 - [c65]Jian Qian, Ronan Fruit, Matteo Pirotta, Alessandro Lazaric:
Exploration Bonus for Regret Minimization in Discrete and Continuous Average Reward MDPs. NeurIPS 2019: 4891-4900 - [c64]Andrea Zanette, Alessandro Lazaric, Mykel J. Kochenderfer, Emma Brunskill:
Limiting Extrapolation in Linear Approximate Value Iteration. NeurIPS 2019: 5616-5625 - [c63]Nicolas Carion, Nicolas Usunier, Gabriel Synnaeve, Alessandro Lazaric:
A Structured Prediction Approach for Generalization in Cooperative Multi-Agent Reinforcement Learning. NeurIPS 2019: 8128-8138 - [c62]Ronald Ortner, Matteo Pirotta, Alessandro Lazaric, Ronan Fruit, Odalric-Ambrym Maillard:
Regret Bounds for Learning State Representations in Reinforcement Learning. NeurIPS 2019: 12717-12727 - [i29]Jean Tarbouriech, Alessandro Lazaric:
Active Exploration in Markov Decision Processes. CoRR abs/1902.11199 (2019) - [i28]Daniele Calandriello, Luigi Carratino
, Alessandro Lazaric, Michal Valko, Lorenzo Rosasco:
Gaussian Process Optimization with Adaptive Sketching: Scalable and No Regret. CoRR abs/1903.05594 (2019) - [i27]Rahma Chaabouni, Eugene Kharitonov, Alessandro Lazaric, Emmanuel Dupoux
, Marco Baroni:
Word-order biases in deep-agent emergent communication. CoRR abs/1905.12330 (2019) - [i26]Nicolas Carion, Gabriel Synnaeve, Alessandro Lazaric, Nicolas Usunier:
A Structured Prediction Approach for Generalization in Cooperative Multi-Agent Reinforcement Learning. CoRR abs/1910.08809 (2019) - [i25]Andrea Zanette, David Brandfonbrener, Matteo Pirotta, Alessandro Lazaric:
Frequentist Regret Bounds for Randomized Least-Squares Value Iteration. CoRR abs/1911.00567 (2019) - [i24]Jean Tarbouriech, Evrard Garcelon, Michal Valko, Matteo Pirotta, Alessandro Lazaric:
No-Regret Exploration in Goal-Oriented Reinforcement Learning. CoRR abs/1912.03517 (2019) - 2018
- [c61]Marc Abeille, Alessandro Lazaric:
Improved Regret Bounds for Thompson Sampling in Linear Quadratic Control Problems. ICML 2018: 1-9 - [c60]Daniele Calandriello, Ioannis Koutis, Alessandro Lazaric, Michal Valko:
Improved Large-Scale Graph Learning through Ridge Spectral Sparsification. ICML 2018: 687-696 - [c59]Ronan Fruit, Matteo Pirotta, Alessandro Lazaric, Ronald Ortner:
Efficient Bias-Span-Constrained Exploration-Exploitation in Reinforcement Learning. ICML 2018: 1573-1581 - [c58]Romain Warlop, Alessandro Lazaric, Jérémie Mary:
Fighting Boredom in Recommender Systems with Linear Reinforcement Learning. NeurIPS 2018: 1764-1773 - [c57]Ronan Fruit, Matteo Pirotta, Alessandro Lazaric:
Near Optimal Exploration-Exploitation in Non-Communicating Markov Decision Processes. NeurIPS 2018: 2998-3008 - [i23]Ronan Fruit, Matteo Pirotta, Alessandro Lazaric, Ronald Ortner:
Efficient Bias-Span-Constrained Exploration-Exploitation in Reinforcement Learning. CoRR abs/1802.04020 (2018) - [i22]Daniele Calandriello, Alessandro Lazaric, Michal Valko:
Distributed Adaptive Sampling for Kernel Matrix Approximation. CoRR abs/1803.10172 (2018) - [i21]Ronan Fruit, Matteo Pirotta, Alessandro Lazaric:
Near Optimal Exploration-Exploitation in Non-Communicating Markov Decision Processes. CoRR abs/1807.02373 (2018) - [i20]Julien Seznec, Andrea Locatelli, Alexandra Carpentier, Alessandro Lazaric, Michal Valko:
Rotting bandits are no harder than stochastic ones. CoRR abs/1811.11043 (2018) - [i19]Jian Qian, Ronan Fruit, Matteo Pirotta, Alessandro Lazaric:
Exploration Bonus for Regret Minimization in Undiscounted Discrete and Continuous Markov Decision Processes. CoRR abs/1812.04363 (2018) - 2017
- [c56]Romain Warlop, Alessandro Lazaric, Jérémie Mary:
Parallel Higher Order Alternating Least Square for Tensor Recommender System. AAAI Workshops 2017 - [c55]Marc Abeille, Alessandro Lazaric:
Linear Thompson Sampling Revisited. AISTATS 2017: 176-184 - [c54]Ronan Fruit, Alessandro Lazaric:
Exploration-Exploitation in MDPs with Options. AISTATS 2017: 576-584 - [c53]Akram Erraqabi, Alessandro Lazaric, Michal Valko, Emma Brunskill, Yun-En Liu:
Trading off Rewards and Errors in Multi-Armed Bandits. AISTATS 2017: 709-717 - [c52]Marc Abeille, Alessandro Lazaric:
Thompson Sampling for Linear-Quadratic Control Problems. AISTATS 2017: 1246-1254 - [c51]Daniele Calandriello, Alessandro Lazaric, Michal Valko:
Distributed Adaptive Sampling for Kernel Matrix Approximation. AISTATS 2017: 1421-1429 - [c50]Daniele Calandriello, Alessandro Lazaric, Michal Valko:
Second-Order Kernel Online Convex Optimization with Adaptive Sketching. ICML 2017: 645-653 - [c49]Carlos Riquelme, Mohammad Ghavamzadeh, Alessandro Lazaric:
Active Learning for Accurate Estimation of Linear Models. ICML 2017: 2931-2939 - [c48]Ronan Fruit, Matteo Pirotta, Alessandro Lazaric, Emma Brunskill:
Regret Minimization in MDPs with Options without Prior Knowledge. NIPS 2017: 3166-3176 - [c47]Daniele Calandriello, Alessandro Lazaric, Michal Valko:
Efficient Second-Order Online Kernel Learning with Adaptive Embedding. NIPS 2017: 6140-6150 - [i18]Carlos Riquelme, Mohammad Ghavamzadeh, Alessandro Lazaric:
Active Learning for Accurate Estimation of Linear Models. CoRR abs/1703.00579 (2017) - [i17]Ronan Fruit, Alessandro Lazaric:
Exploration-Exploitation in MDPs with Options. CoRR abs/1703.08667 (2017) - [i16]Kamyar Azizzadenesheli, Alessandro Lazaric, Animashree Anandkumar:
Experimental results : Reinforcement Learning of POMDPs using Spectral Methods. CoRR abs/1705.02553 (2017) - [i15]Daniele Calandriello, Alessandro Lazaric, Michal Valko:
Second-Order Kernel Online Convex Optimization with Adaptive Sketching. CoRR abs/1706.04892 (2017) - 2016
- [j6]Alessandro Lazaric, Mohammad Ghavamzadeh, Rémi Munos:
Analysis of Classification-based Policy Iteration Algorithms. J. Mach. Learn. Res. 17: 19:1-19:30 (2016) - [c46]Victor Gabillon, Alessandro Lazaric, Mohammad Ghavamzadeh, Ronald Ortner, Peter L. Bartlett:
Improved Learning Complexity in Combinatorial Pure Exploration Bandits. AISTATS 2016: 1004-1012 - [c45]Kamyar Azizzadenesheli, Alessandro Lazaric, Animashree Anandkumar:
Reinforcement Learning of POMDPs using Spectral Methods. COLT 2016: 193-256 - [c44]Kamyar Azizzadenesheli, Alessandro Lazaric, Animashree Anandkumar:
Open Problem: Approximate Planning of POMDPs in the class of Memoryless Policies. COLT 2016: 1639-1642 - [c43]Daniele Calandriello, Alessandro Lazaric, Michal Valko:
Analysis of Nyström method with sequential ridge leverage scores. UAI 2016 - [i14]Daniele Calandriello, Alessandro Lazaric, Michal Valko, Ioannis Koutis:
Incremental Spectral Sparsification for Large-Scale Graph-Based Semi-Supervised Learning. CoRR abs/1601.05675 (2016) - [i13]Kamyar Azizzadenesheli, Alessandro Lazaric, Animashree Anandkumar:
Reinforcement Learning of POMDP's using Spectral Methods. CoRR abs/1602.07764 (2016) - [i12]Kamyar Azizzadenesheli, Alessandro Lazaric, Animashree Anandkumar:
Open Problem: Approximate Planning of POMDPs in the class of Memoryless Policies. CoRR abs/1608.04996 (2016) - [i11]Daniele Calandriello, Alessandro Lazaric, Michal Valko:
Analysis of Kelner and Levin graph sparsification algorithm for a streaming setting. CoRR abs/1609.03769 (2016) - [i10]Kamyar Azizzadenesheli, Alessandro Lazaric, Animashree Anandkumar:
Reinforcement Learning of Contextual MDPs using Spectral Methods. CoRR abs/1611.03907 (2016) - [i9]Marc Abeille, Alessandro Lazaric:
Linear Thompson Sampling Revisited. CoRR abs/1611.06534 (2016) - 2015
- [j5]Nicola Gatti
, Alessandro Lazaric
, Marco Rocco, Francesco Trovò
:
Truthful learning mechanisms for multi-slot sponsored search auctions with externalities. Artif. Intell. 227: 93-139 (2015) - [j4]Daniele Calandriello, Alessandro Lazaric, Marcello Restelli:
Sparse multi-task reinforcement learning. Intelligenza Artificiale 9(1): 5-20 (2015) - [c42]Julien Audiffren, Michal Valko, Alessandro Lazaric, Mohammad Ghavamzadeh:
Maximum Entropy Semi-Supervised Inverse Reinforcement Learning. IJCAI 2015: 3315-3321 - [c41]Jessica Chemali, Alessandro Lazaric:
Direct Policy Iteration with Demonstrations. IJCAI 2015: 3380-3386 - [c40]