default search action
Oliver Kramer 0001
Person information
- affiliation: University of Oldenburg, Department of Computing Science
- affiliation: University of Paderborn, Department of Computer Science
Other persons with the same name
- Oliver Kramer 0002 — Technische Hochschule Rosenheim, Rosenheim, Germany
Refine list
refinements active!
zoomed in on ?? of ?? records
view refined list in
export refined list as
2020 – today
- 2024
- [c131]Jill Baumann, Oliver Kramer:
Evolutionary Multi-objective Optimization of Large Language Model Prompts for Balancing Sentiments. EvoApplications@EvoStar 2024: 212-224 - [i16]Jill Baumann, Oliver Kramer:
Evolutionary Multi-Objective Optimization of Large Language Model Prompts for Balancing Sentiments. CoRR abs/2401.09862 (2024) - [i15]Oliver Kramer:
Large Language Models for Tuning Evolution Strategies. CoRR abs/2405.10999 (2024) - [i14]Jill Baumann, Oliver Kramer:
Towards Explainable Evolution Strategies with Large Language Models. CoRR abs/2407.08331 (2024) - [i13]Oliver Kramer, Jill Baumann:
Unlocking Structured Thinking in Language Models with Cognitive Prompting. CoRR abs/2410.02953 (2024) - 2023
- [c130]Oliver Kramer:
Enhancing Evolution Strategies with Evolution Path Bias. ESANN 2023 - [c129]Oliver Kramer, Jill Baumann:
Wind Power Prediction with ETSformer. ESANN 2023 - 2022
- [c128]Oliver Kramer:
A Fast and Simple Evolution Strategy with Covariance Matrix Estimation. ESANN 2022 - [c127]Tim Cofala, Oliver Kramer:
An evolutionary fragment-based approach to molecular fingerprint reconstruction. GECCO 2022: 1156-1163 - 2021
- [c126]Patrick Burke, Jonas Prellberg, Oliver Kramer:
Evolutionary Deep Multi-Task Learning. ESANN 2021 - [c125]Tim Cofala, Oliver Kramer:
Transformers for Molecular Graph Generation. ESANN 2021 - [c124]Tim Cofala, Thomas Teusch, Oliver Kramer:
Spatial Generation of Molecules with Transformers. IJCNN 2021: 1-7 - 2020
- [c123]Tim Cofala, Lars Elend, Oliver Kramer:
Tournament Selection Improves Cartesian Genetic Programming for Atari Games. ESANN 2020: 345-350 - [c122]Oliver Kramer:
Learning Step Size Adaptation in Evolution Strategies. ESANN 2020: 435-440 - [c121]Nils Worzyk, Stefan Niewerth, Oliver Kramer:
Adversarials-1 in Speech Recognition: Detection and Defence. ESANN 2020: 619-624 - [c120]Stefan Oehmcke, Thomas Teusch, Thorben Petersen, Thorsten Klüner, Oliver Kramer:
Modeling H2O/Rutile-TiO2(110) Potential Energy Surfaces with Deep Networks. IJCNN 2020: 1-7 - [c119]Jonas Prellberg, Oliver Kramer:
Learned Weight Sharing for Deep Multi-Task Learning by Natural Evolution Strategy and Stochastic Gradient Descent. IJCNN 2020: 1-8 - [c118]Lars Elend, Sebastian A. Tideman, Kerstin Lopatta, Oliver Kramer:
Earnings Prediction with Deep Learning. KI 2020: 267-274 - [c117]Tim Cofala, Lars Elend, Philip Mirbach, Jonas Prellberg, Thomas Teusch, Oliver Kramer:
Evolutionary Multi-objective Design of SARS-CoV-2 Protease Inhibitor Candidates. PPSN (2) 2020: 357-371 - [i12]Jonas Prellberg, Oliver Kramer:
Learned Weight Sharing for Deep Multi-Task Learning by Natural Evolution Strategy and Stochastic Gradient Descent. CoRR abs/2003.10159 (2020) - [i11]Tim Cofala, Lars Elend, Philip Mirbach, Jonas Prellberg, Thomas Teusch, Oliver Kramer:
Evolutionary Multi-Objective Design of SARS-CoV-2 Protease Inhibitor Candidates. CoRR abs/2005.02666 (2020) - [i10]Lars Elend, Sebastian A. Tideman, Kerstin Lopatta, Oliver Kramer:
Earnings Prediction with Deep Learning. CoRR abs/2006.03132 (2020)
2010 – 2019
- 2019
- [c116]Tim Silhan, Stefan Oehmcke, Oliver Kramer:
Evolution of Stacked Autoencoders. CEC 2019: 823-830 - [c115]Almuth Meier, Oliver Kramer:
Predictive Uncertainty Estimation with Temporal Convolutional Networks for Dynamic Evolutionary Optimization. ICANN (2) 2019: 409-421 - [c114]Nils Worzyk, Hendrik Kahlen, Oliver Kramer:
Physical Adversarial Attacks by Projecting Perturbations. ICANN (3) 2019: 649-659 - [c113]Lars Elend, Oliver Kramer:
Self-Organizing Maps with Convolutional Layers. WSOM+ 2019: 23-32 - [i9]Jonas Prellberg, Oliver Kramer:
Acute Lymphoblastic Leukemia Classification from Microscopic Images using Convolutional Neural Networks. CoRR abs/1906.09020 (2019) - 2018
- [j23]Stefan Oehmcke, Oliver Zielinski, Oliver Kramer:
Input quality aware convolutional LSTM networks for virtual marine sensors. Neurocomputing 275: 2603-2615 (2018) - [c112]Nils Worzyk, Oliver Kramer:
Properties of adv-1 - Adversarials of Adversarials. ESANN 2018 - [c111]Oliver Kramer:
Evolution of Convolutional Highway Networks. EvoApplications 2018: 395-404 - [c110]Almuth Meier, Oliver Kramer:
Prediction with Recurrent Neural Networks in Evolutionary Dynamic Optimization. EvoApplications 2018: 848-863 - [c109]Almuth Meier, Oliver Kramer:
Recurrent neural network-predictions for PSO in dynamic optimization. GECCO 2018: 29-36 - [c108]Robert Schadek, Oliver Kramer, Oliver E. Theel:
Predicting Read- and Write-Operation Availabilities of Quorum Protocols based on Graph Properties. ICAART (2) 2018: 550-558 - [c107]Stefan Oehmcke, Oliver Zielinski, Oliver Kramer:
Direct Training of Dynamic Observation Noise with UMarineNet. ICANN (1) 2018: 123-133 - [c106]Oliver Kramer:
Dimensionality Reduction with Evolutionary Shephard-Kruskal Embeddings. ICPRAM 2018: 478-481 - [c105]Jonas Prellberg, Oliver Kramer:
Multi-label Classification of Surgical Tools with Convolutional Neural Networks. IJCNN 2018: 1-8 - [c104]Nils Worzyk, Oliver Kramer:
Adversarials -1: Defending by Attacking. IJCNN 2018: 1-8 - [c103]Stefan Oehmcke, Oliver Kramer:
Knowledge Sharing for Population Based Neural Network Training. KI 2018: 258-269 - [c102]Jonas Prellberg, Oliver Kramer:
Limited Evaluation Evolutionary Optimization of Large Neural Networks. KI 2018: 270-283 - [c101]Jonas Prellberg, Oliver Kramer:
Lamarckian Evolution of Convolutional Neural Networks. PPSN (2) 2018: 424-435 - [i8]Jonas Prellberg, Oliver Kramer:
Multi-label Classification of Surgical Tools with Convolutional Neural Networks. CoRR abs/1805.05760 (2018) - [i7]Jonas Prellberg, Oliver Kramer:
Lamarckian Evolution of Convolutional Neural Networks. CoRR abs/1806.08099 (2018) - [i6]Jonas Prellberg, Oliver Kramer:
Limited Evaluation Evolutionary Optimization of Large Neural Networks. CoRR abs/1806.09819 (2018) - 2017
- [b5]Oliver Kramer:
Genetic Algorithm Essentials. Studies in Computational Intelligence 679, Springer 2017, ISBN 978-3-319-52155-8, pp. 3-84 - [j22]Ali Ahrari, Oliver Kramer:
Finite life span for improving the selection scheme in evolution strategies. Soft Comput. 21(2): 501-513 (2017) - [c100]Manish Aggarwal, Justin Heinermann, Stefan Oehmcke, Oliver Kramer:
Preferences-Based Choice Prediction in Evolutionary Multi-objective Optimization. EvoApplications (1) 2017: 715-724 - [c99]Wei Lee Woon, Stefan Oehmcke, Oliver Kramer:
Spatio-Temporal Wind Power Prediction Using Recurrent Neural Networks. ICONIP (5) 2017: 556-563 - [c98]Daniel Lückehe, Stefan Oehmcke, Oliver Kramer:
Manifold learning with iterative dimensionality photo-projection. IJCNN 2017: 2555-2561 - [c97]Stefan Oehmcke, Oliver Zielinski, Oliver Kramer:
Recurrent neural networks and exponential PAA for virtual marine sensors. IJCNN 2017: 4459-4466 - [c96]Oliver Kramer:
Evolving Kernel PCA Pipelines with Evolution Strategies. KI 2017: 170-177 - [c95]Almuth Meier, Oliver Kramer:
An Experimental Study of Dimensionality Reduction Methods. KI 2017: 178-192 - [e2]Wei Lee Woon, Zeyar Aung, Oliver Kramer, Stuart E. Madnick:
Data Analytics for Renewable Energy Integration - 4th ECML PKDD Workshop, DARE 2016, Riva del Garda, Italy, September 23, 2016, Revised Selected Papers. Lecture Notes in Computer Science 10097, 2017, ISBN 978-3-319-50946-4 [contents] - [e1]Wei Lee Woon, Zeyar Aung, Oliver Kramer, Stuart E. Madnick:
Data Analytics for Renewable Energy Integration: Informing the Generation and Distribution of Renewable Energy - 5th ECML PKDD Workshop, DARE 2017, Skopje, Macedonia, September 22, 2017, Revised Selected Papers. Lecture Notes in Computer Science 10691, Springer 2017, ISBN 978-3-319-71642-8 [contents] - [i5]Oliver Kramer:
Evolution of Convolutional Highway Networks. CoRR abs/1709.03247 (2017) - 2016
- [c94]Daniel Lückehe, Markus Wagner, Oliver Kramer:
Constrained evolutionary wind turbine placement with penalty functions. CEC 2016: 4903-4910 - [c93]Abhishek Awasthi, Jörg Lässig, Thomas Weise, Oliver Kramer:
Tackling Common Due Window Problem with a Two-Layered Approach. COCOA 2016: 772-781 - [c92]Oliver Kramer:
Local Fitness Meta-Models with Nearest Neighbor Regression. EvoApplications (2) 2016: 3-10 - [c91]Judith Neugebauer, Oliver Kramer, Michael Sonnenschein:
Improving Cascade Classifier Precision by Instance Selection and Outlier Generation. ICAART (2) 2016: 96-104 - [c90]Judith Neugebauer, Oliver Kramer, Michael Sonnenschein:
Instance Selection and Outlier Generation to Improve the Cascade Classifier Precision. ICAART (Revised Selected Papers) 2016: 151-170 - [c89]Wei Lee Woon, Oliver Kramer:
Enhanced SVR ensembles for wind power prediction. IJCNN 2016: 2743-2748 - [c88]Stefan Oehmcke, Oliver Zielinski, Oliver Kramer:
kNN ensembles with penalized DTW for multivariate time series imputation. IJCNN 2016: 2774-2781 - [c87]Judith Neugebauer, Jörg Bremer, Christian Hinrichs, Oliver Kramer, Michael Sonnenschein:
Generalized cascade classification model with customized transformation based ensembles. IJCNN 2016: 4056-4063 - [c86]Björn Wolff, Oliver Kramer, Detlev Heinemann:
Selection of Numerical Weather Forecast Features for PV Power Predictions with Random Forests. DARE@PKDD/ECML 2016: 78-91 - [c85]Justin Heinermann, Jörg Lässig, Oliver Kramer:
Evolutionary Multi-objective Ensembles for Wind Power Prediction. DARE@PKDD/ECML 2016: 92-101 - [c84]Oliver Kramer:
Dimensionality Reduction Hybridizations with Multi-dimensional Scaling. WSOM 2016: 155-163 - [p3]Nils André Treiber, Justin Heinermann, Oliver Kramer:
Wind Power Prediction with Machine Learning. Computational Sustainability 2016: 13-29 - [p2]Björn Wolff, Elke Lorenz, Oliver Kramer:
Statistical Learning for Short-Term Photovoltaic Power Predictions. Computational Sustainability 2016: 31-45 - 2015
- [j21]Oliver Kramer:
Cascade Support Vector Machines with Dimensionality Reduction. Appl. Comput. Intell. Soft Comput. 2015: 216132:1-216132:8 (2015) - [j20]Oliver Kramer, Thole Klingenberg, Michael Sonnenschein, Olaf Wilken:
Non-intrusive appliance load monitoring with bagging classifiers. Log. J. IGPL 23(3): 359-368 (2015) - [j19]Oliver Kramer:
Unsupervised nearest neighbor regression for dimensionality reduction. Soft Comput. 19(6): 1647-1661 (2015) - [c83]Justin Heinermann, Oliver Kramer:
On Heterogeneous Machine Learning Ensembles for Wind Power Prediction. AAAI Workshop: Computational Sustainability 2015 - [c82]Nils André Treiber, Oliver Kramer:
Evolutionary feature weighting for wind power prediction with nearest neighbor regression. CEC 2015: 332-337 - [c81]Oliver Kramer, Daniel Lückehe:
Visualization of evolutionary runs with isometric mapping. CEC 2015: 1359-1363 - [c80]Oliver Kramer:
Evolution strategies with Ledoit-Wolf covariance matrix estimation. CEC 2015: 1712-1716 - [c79]Oliver Kramer:
Supervised Manifold Learning with Incremental Stochastic Embeddings. ESANN 2015 - [c78]Nils André Treiber, Stephan Späth, Justin Heinermann, Lueder von Bremen, Oliver Kramer:
Comparison of Numerical Models and Statistical Learning for Wind Speed Prediction. ESANN 2015 - [c77]Daniel Lückehe, Oliver Kramer:
Alternating Optimization of Unsupervised Regression with Evolutionary Embeddings. EvoApplications 2015: 471-480 - [c76]Oliver Kramer:
Hybrid Manifold Clustering with Evolutionary Tuning. EvoApplications 2015: 481-490 - [c75]Stefan Oehmcke, Justin Heinermann, Oliver Kramer:
Analysis of Diversity Methods for Evolutionary Multi-objective Ensemble Classifiers. EvoApplications 2015: 567-578 - [c74]Daniel Lückehe, Markus Wagner, Oliver Kramer:
On Evolutionary Approaches to Wind Turbine Placement with Geo-Constraints. GECCO 2015: 1223-1230 - [c73]Abhishek Awasthi, Jörg Lässig, Oliver Kramer:
Un-restricted Common Due-Date Problem with Controllable Processing Times - Linear Algorithm for a Given Job Sequence. ICEIS (1) 2015: 526-534 - [c72]Jannes Stubbemann, Nils André Treiber, Oliver Kramer:
Resilient Propagation for Multivariate Wind Power Prediction. ICPRAM (2) 2015: 333-337 - [c71]Oliver Kramer:
Dimensionality reduction in continuous evolutionary optimization. IJCNN 2015: 1-4 - [c70]Justin Heinermann, Oliver Kramer:
Short-Term Wind Power Prediction with Combination of Speed and Power Time Series. KI 2015: 100-110 - [c69]Stefan Oehmcke, Oliver Zielinski, Oliver Kramer:
Event Detection in Marine Time Series Data. KI 2015: 279-286 - [c68]Daniel Lückehe, Oliver Kramer, Manfred Weisensee:
Simulated Annealing With Parameter Tuning for Wind Turbine Placement Optimization. LWA 2015: 108-119 - [c67]Judith Neugebauer, Oliver Kramer, Michael Sonnenschein:
Classification Cascades of Overlapping Feature Ensembles for Energy Time Series Data. DARE 2015: 76-93 - 2014
- [b4]Oliver Kramer:
A Brief Introduction to Continuous Evolutionary Optimization. SpringerBriefs in Applied Sciences and Technology, Springer 2014, ISBN 978-3-319-03421-8, pp. I-IX, 1-94 - [j18]Christoph Goebel, Hans-Arno Jacobsen, Victor del Razo, Christoph Doblander, José Rivera, Jens P. Ilg, Christoph M. Flath, Hartmut Schmeck, Christof Weinhardt, Daniel Pathmaperuma, Hans-Jürgen Appelrath, Michael Sonnenschein, Sebastian Lehnhoff, Oliver Kramer, Thorsten Staake, Elgar Fleisch, Dirk Neumann, Jens Strüker, Koray Erek, Rüdiger Zarnekow, Holger Ziekow, Jörg Lässig:
Energy Informatics - Current and Future Research Directions. Bus. Inf. Syst. Eng. 6(1): 25-31 (2014) - [j17]Fabian Gieseke, Antti Airola, Tapio Pahikkala, Oliver Kramer:
Fast and simple gradient-based optimization for semi-supervised support vector machines. Neurocomputing 123: 23-32 (2014) - [j16]Tapio Pahikkala, Antti Airola, Fabian Gieseke, Oliver Kramer:
On Unsupervised Training of Multi-Class Regularized Least-Squares Classifiers. J. Comput. Sci. Technol. 29(1): 90-104 (2014) - [j15]Christoph Goebel, Hans-Arno Jacobsen, Victor del Razo, Christoph Doblander, José Rivera, Jens P. Ilg, Christoph M. Flath, Hartmut Schmeck, Christof Weinhardt, Daniel Pathmaperuma, Hans-Jürgen Appelrath, Michael Sonnenschein, Sebastian Lehnhoff, Oliver Kramer, Thorsten Staake, Elgar Fleisch, Dirk Neumann, Jens Strüker, Koray Erek, Rüdiger Zarnekow, Holger Ziekow, Jörg Lässig:
Energieinformatik - Aktuelle und zukünftige Forschungsschwerpunkte. Wirtschaftsinf. 56(1): 31-39 (2014) - [c66]Abhishek Awasthi, Jörg Lässig, Oliver Kramer, Thomas Weise:
Common Due-Window problem: Polynomial algorithms for a given processing sequence. CIPLS 2014: 32-39 - [c65]Jörg Lässig, Abhishek Awasthi, Oliver Kramer:
Common Due-Date Problem: Linear Algorithm for a Given Job Sequence. CSE 2014: 97-104 - [c64]Nils André Treiber, Oliver Kramer:
Wind Power Prediction with Cross-Correlation Weighted Nearest Neighbors. EnviroInfo 2014: 63-68 - [c63]Daniel Lückehe, Oliver Kramer, Manfred Weisensee:
An Evolutionary Approach to Geo-Planning of Renewable Energies. EnviroInfo 2014: 501-508 - [c62]Daniel Lückehe, Oliver Kramer:
A variable kernel function for hybrid unsupervised kernel regression. GECCO (Companion) 2014: 77-78 - [c61]Oliver Kramer, Nils André Treiber, Michael Sonnenschein:
Wind Power Ramp Event Prediction with Support Vector Machines. HAIS 2014: 37-48 - [c60]Daniel Lückehe, Oliver Kramer:
Leaving Local Optima in Unsupervised Kernel Regression. ICANN 2014: 137-144 - [c59]Justin Heinermann, Oliver Kramer:
Precise Wind Power Prediction with SVM Ensemble Regression. ICANN 2014: 797-804 - [c58]Jendrik Poloczek, Oliver Kramer:
Multi-stage Constraint Surrogate Models for Evolution Strategies. KI 2014: 255-266 - [c57]Nils André Treiber, Oliver Kramer:
Evolutionary Turbine Selection for Wind Power Predictions. KI 2014: 267-272 - [c56]Olaf Wilken, Oliver Kramer, Enno-Edzard Steen, Andreas Hein:
Activity Recognition Using Non-intrusive Appliance Load Monitoring. PECCS 2014: 40-48 - [c55]Oliver Kramer, Fabian Gieseke, Justin Heinermann, Jendrik Poloczek, Nils André Treiber:
A Framework for Data Mining in Wind Power Time Series. DARE 2014: 97-107 - [c54]Jendrik Poloczek, Nils André Treiber, Oliver Kramer:
KNN Regression as Geo-Imputation Method for Spatio-Temporal Wind Data. SOCO-CISIS-ICEUTE 2014: 185-193 - [i4]Abhishek Awasthi, Jörg Lässig, Oliver Kramer:
A Novel Approach to the Common Due-Date Problem on Single and Parallel Machines. CoRR abs/1405.1234 (2014) - 2013
- [b3]Oliver Kramer:
Dimensionality Reduction with Unsupervised Nearest Neighbors. Intelligent Systems Reference Library 51, Springer 2013, ISBN 978-3-642-38651-0, pp. 1-118 - [j14]Oliver Kramer, Fabian Gieseke, Kai Lars Polsterer:
Learning morphological maps of galaxies with unsupervised regression. Expert Syst. Appl. 40(8): 2841-2844 (2013) - [j13]Oliver Kramer, Fabian Gieseke, Benjamin Satzger:
Wind energy prediction and monitoring with neural computation. Neurocomputing 109: 84-93 (2013) - [j12]Benjamin Satzger, Oliver Kramer:
Goal distance estimation for automated planning using neural networks and support vector machines. Nat. Comput. 12(1): 87-100 (2013) - [c53]Oliver Kramer, Uli Schlachter, Valentin Spreckels:
An adaptive penalty function with meta-modeling for constrained problems. IEEE Congress on Evolutionary Computation 2013: 1350-1354 - [c52]Abhishek Awasthi, Oliver Kramer, Jörg Lässig:
Aircraft Landing Problem: An Efficient Algorithm for a Given Landing Sequence. CSE 2013: 20-27 - [c51]Oliver Kramer, Nils André Treiber, Fabian Gieseke:
Support Vector Machines for Wind Energy Prediction in Smart Grids. EnviroInfo 2013: 16-24 - [c50]Fabian Gieseke, Oliver Kramer:
Towards Non-linear Constraint Estimation for Expensive Optimization. EvoApplications 2013: 459-468 - [c49]Oliver Kramer:
On Missing Data Hybridizations for Dimensionality Reduction. Hybrid Metaheuristics 2013: 189-197 - [c48]Oliver Kramer:
Fast Submanifold Learning with Unsupervised Nearest Neighbors. ICANNGA 2013: 317-325 - [c47]Justin Heinermann, Oliver Kramer, Kai Lars Polsterer, Fabian Gieseke:
On GPU-Based Nearest Neighbor Queries for Large-Scale Photometric Catalogs in Astronomy. KI 2013: 86-97 - [c46]Oliver Kramer:
On Mutation Rate Tuning and Control for the (1+1)-EA. KI 2013: 98-105 - [c45]Jendrik Poloczek, Oliver Kramer:
Local SVM Constraint Surrogate Models for Self-adaptive Evolution Strategies. KI 2013: 164-175 - [c44]Abhishek Awasthi, Jörg Lässig, Oliver Kramer:
Common Due-Date Problem: Exact Polynomial Algorithms for a Given Job Sequence. SYNASC 2013: 258-264 - [i3]Abhishek Awasthi, Jörg Lässig, Oliver Kramer:
Common Due-Date Problem: Exact Polynomial Algorithms for a Given Job Sequence. CoRR abs/1311.2879 (2013) - [i2]Abhishek Awasthi, Oliver Kramer, Jörg Lässig:
Aircraft Landing Problem: Efficient Algorithm for a Given Landing Sequence. CoRR abs/1311.2880 (2013) - 2012
- [j11]Oliver Kramer, Fabian Gieseke:
Evolutionary kernel density regression. Expert Syst. Appl. 39(10): 9246-9254 (2012) - [j10]Oliver Kramer, Christian Igel, Günter Rudolph:
Evolutionary kernel machines. Evol. Intell. 5(3): 151-152 (2012) - [j9]Fabian Gieseke, Oliver Kramer, Antti Airola, Tapio Pahikkala:
Efficient recurrent local search strategies for semi- and unsupervised regularized least-squares classification. Evol. Intell. 5(3): 189-205 (2012) - [c43]Oliver Kramer:
A Particle Swarm Embedding Algorithm for Nonlinear Dimensionality Reduction. ANTS 2012: 1-12 - [c42]Oliver Kramer:
On Evolutionary Approaches to Unsupervised Nearest Neighbor Regression. EvoApplications 2012: 346-355 - [c41]Oliver Kramer, Olaf Wilken, Petra Beenken, Andreas Hein, Andreas Hüwel, Thole Klingenberg, Christopher Meinecke, T. Raabe, Michael Sonnenschein:
On Ensemble Classifiers for Nonintrusive Appliance Load Monitoring. HAIS (1) 2012: 322-331 - [c40]Oliver Kramer:
On Unsupervised Nearest-neighbor Regression and Robust Loss Functions. ICAART (1) 2012: 164-170 - [c39]Oliver Kramer:
Sorting High-Dimensional Patterns with Unsupervised Nearest Neighbors. ICAART (Revised Selected Papers) 2012: 250-267 - [c38]Tapio Pahikkala, Antti Airola, Fabian Gieseke, Oliver Kramer:
Unsupervised Multi-class Regularized Least-Squares Classification. ICDM 2012: 585-594 - [c37]Fabian Gieseke, Antti Airola, Tapio Pahikkala, Oliver Kramer:
Sparse Quasi-Newton Optimization for Semi-supervised Support Vector Machines. ICPRAM (1) 2012: 45-54 - [c36]Oliver Kramer:
Unsupervised Nearest Neighbors with Kernels. KI 2012: 97-106 - 2011
- [j8]Oliver Kramer, Holger Danielsiek:
A Clustering-Based Niching Framework for the Approximation of Equivalent Pareto-Subsets. Int. J. Comput. Intell. Appl. 10(3): 295-311 (2011) - [j7]Oliver Kramer:
On Machine Symbol Grounding and Optimization. Int. J. Cogn. Informatics Nat. Intell. 5(3): 73-85 (2011) - [c35]Oliver Kramer, Tobias Hein:
Monitoring of multivariate wind resources with self-organizing maps and slow feature analysis. CIASG 2011: 69-76 - [c34]Oliver Kramer:
Machine Symbol Grounding and Optimization. ICAART (1) 2011: 464-469 - [c33]Oliver Kramer:
Dimensionality Reduction by Unsupervised K-Nearest Neighbor Regression. ICMLA (1) 2011: 275-278 - [c32]Oliver Kramer, Fabian Gieseke:
Analysis of wind energy time series with kernel methods and neural networks. ICNC 2011: 2381-2385 - [c31]Jörg Lässig, Benjamin Satzger, Oliver Kramer:
Self-Stabilization in Hierarchically Structured Energy Markets. ITNG 2011: 803-809 - [c30]Fabian Gieseke, Oliver Kramer, Antti Airola, Tapio Pahikkala:
Speedy Local Search for Semi-Supervised Regularized Least-Squares. KI 2011: 87-98 - [c29]Oliver Kramer, Fabian Gieseke:
Variance Scaling for EDAs Revisited. KI 2011: 169-178 - [c28]Jörg Lässig, Benjamin Satzger, Oliver Kramer:
Hierarchically Structured Energy Markets as Novel Smart Grid Control Approach. KI 2011: 179-190 - [c27]Oliver Kramer, Fabian Gieseke:
Short-Term Wind Energy Forecasting Using Support Vector Regression. SOCO 2011: 271-280 - [p1]Oliver Kramer, David Echeverría Ciaurri, Slawomir Koziel:
Derivative-Free Optimization. Computational Optimization, Methods and Algorithms 2011: 61-83 - [i1]Oliver Kramer:
Unsupervised K-Nearest Neighbor Regression. CoRR abs/1107.3600 (2011) - 2010
- [j6]Oliver Kramer:
A Review of Constraint-Handling Techniques for Evolution Strategies. Appl. Comput. Intell. Soft Comput. 2010: 185063:1-185063:11 (2010) - [j5]Tzung-Pei Hong, Chuan-Kang Ting, Oliver Kramer:
Theory and Applications of Evolutionary Computation. Appl. Comput. Intell. Soft Comput. 2010: 360796:1-360796:2 (2010) - [j4]Oliver Kramer:
Evolutionary self-adaptation: a survey of operators and strategy parameters. Evol. Intell. 3(2): 51-65 (2010) - [j3]Oliver Kramer:
Covariance Matrix Self-Adaptation and Kernel Regression - Perspectives of Evolutionary Optimization in Kernel Machines. Fundam. Informaticae 98(1): 87-106 (2010) - [j2]Oliver Kramer:
Iterated local search with Powell's method: a memetic algorithm for continuous global optimization. Memetic Comput. 2(1): 69-83 (2010) - [c26]Jan Quadflieg, Mike Preuss, Oliver Kramer, Günter Rudolph:
Learning the track and planning ahead in a car racing controller. CIG 2010: 395-402 - [c25]Oliver Kramer, Holger Danielsiek:
DBSCAN-based multi-objective niching to approximate equivalent pareto-subsets. GECCO 2010: 503-510 - [c24]Oliver Kramer, Benjamin Satzger, Jörg Lässig:
Managing Energy in a Virtual Power Plant Using Learning Classifier Systems. GEM 2010: 111-117 - [c23]Marcel Martin, Jonathan Maycock, Florian Paul Schmidt, Oliver Kramer:
Recognition of Manual Actions Using Vector Quantization and Dynamic Time Warping. HAIS (1) 2010: 221-228 - [c22]Oliver Kramer, Benjamin Satzger, Jörg Lässig:
Power Prediction in Smart Grids with Evolutionary Local Kernel Regression. HAIS (1) 2010: 262-269 - [c21]Benjamin Satzger, Oliver Kramer, Jörg Lässig:
Adaptive Heuristic Estimates for Automated Planning Using Regression. IC-AI 2010: 576-581 - [c20]Fabian Gieseke, Kai Lars Polsterer, Andreas Thom, Peter Zinn, Dominik Bomanns, Ralf-Jurgen Dettmar, Oliver Kramer, Jan Vahrenhold:
Detecting Quasars in Large-Scale Astronomical Surveys. ICMLA 2010: 352-357 - [c19]Tobias Hein, Oliver Kramer:
Recognition and Visualization of Music Sequences Using Self-organizing Feature Maps. KI 2010: 160-167 - [c18]Andreas Thom, Oliver Kramer:
Acceleration of DBSCAN-Based Clustering with Reduced Neighborhood Evaluations. KI 2010: 195-202
2000 – 2009
- 2009
- [b2]Oliver Kramer:
Computational Intelligence - Eine Einführung. Informatik im Fokus, Springer 2009, ISBN 978-3-540-79738-8, pp. I-X, 1-158 - [c17]Sven Rahmann, Tobias Marschall, Frank Behler, Oliver Kramer:
Modeling evolutionary fitness for DNA motif discovery. GECCO 2009: 225-232 - [c16]Patrick Koch, Oliver Kramer, Günter Rudolph, Nicola Beume:
On the hybridization of SMS-EMOA and local search for continuous multiobjective optimization. GECCO 2009: 603-610 - [c15]Oliver Kramer:
Fast Blackbox Optimization: Iterated Local Search and the Strategy of Powell. GEM 2009: 159-163 - [c14]Fabian Gieseke, Tapio Pahikkala, Oliver Kramer:
Fast evolutionary maximum margin clustering. ICML 2009: 361-368 - [c13]Oliver Kramer, André Barthelmes, Günter Rudolph:
Surrogate Constraint Functions for CMA Evolution Strategies. KI 2009: 169-176 - [c12]Oliver Kramer, Patrick Koch:
Rake Selection: A Novel Evolutionary Multi-Objective Optimization Algorithm. KI 2009: 177-184 - [c11]Oliver Kramer, Tobias Hein:
Stochastic Feature Selection in Support Vector Machine Based Instrument Recognition. KI 2009: 727-734 - 2008
- [b1]Oliver Kramer:
Self-Adaptive Heuristics for Evolutionary Computation. University of Paderborn, Germany, Studies in Computational Intelligence 147, Springer 2008, ISBN 978-3-540-69280-5, pp. 1-161 [contents] - [c10]Oliver Kramer:
Self-Adaptive Inversion Mutation for Combinatorial Representations. GEM 2008: 3-9 - [c9]Oliver Kramer:
Premature Convergence in Constrained Continuous Search Spaces. PPSN 2008: 62-71 - 2007
- [c8]Oliver Kramer, Stephan Brügger, Dejan Lazovic:
Sex and death: towards biologically inspired heuristics for constraint handling. GECCO 2007: 666-673 - [c7]Oliver Kramer, Bartek Gloger, Andreas Goebels:
An experimental analysis of evolution strategies and particle swarm optimisers using design of experiments. GECCO 2007: 674-681 - [c6]Oliver Kramer, Patrick Koch:
Self-adaptive partially mapped crossover. GECCO 2007: 1523 - 2006
- [j1]Oliver Kramer, Hans-Paul Schwefel:
On three new approaches to handle constraints within evolution strategies. Nat. Comput. 5(4): 363-385 (2006) - [c5]Steffen Priesterjahn, Oliver Kramer, Alexander Weimer, Andreas Goebels:
Evolution of Human-Competitive Agents in Modern Computer Games. IEEE Congress on Evolutionary Computation 2006: 777-784 - [c4]Oliver Kramer, Benno Stein, Jürgen Wall:
AI and Music: Toward a Taxonomy of Problem Classes. ECAI 2006: 695-696 - 2005
- [c3]Oliver Kramer, Chuan-Kang Ting, Hans Kleine Büning:
A new mutation operator for evolution strategies for constrained problems. Congress on Evolutionary Computation 2005: 2600-2606 - [c2]Oliver Kramer, Chuan-Kang Ting, Hans Kleine Büning:
A mutation operator for evolution strategies to handle constrained problems. GECCO 2005: 917-918 - [c1]Steffen Priesterjahn, Oliver Kramer, Alexander Weimer, Andreas Goebels:
Evolution of Reactive Rules in Multi Player Computer Games Based on Imitation. ICNC (2) 2005: 744-755
Coauthor Index
manage site settings
To protect your privacy, all features that rely on external API calls from your browser are turned off by default. You need to opt-in for them to become active. All settings here will be stored as cookies with your web browser. For more information see our F.A.Q.
Unpaywalled article links
Add open access links from to the list of external document links (if available).
Privacy notice: By enabling the option above, your browser will contact the API of unpaywall.org to load hyperlinks to open access articles. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Unpaywall privacy policy.
Archived links via Wayback Machine
For web page which are no longer available, try to retrieve content from the of the Internet Archive (if available).
Privacy notice: By enabling the option above, your browser will contact the API of archive.org to check for archived content of web pages that are no longer available. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Internet Archive privacy policy.
Reference lists
Add a list of references from , , and to record detail pages.
load references from crossref.org and opencitations.net
Privacy notice: By enabling the option above, your browser will contact the APIs of crossref.org, opencitations.net, and semanticscholar.org to load article reference information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Crossref privacy policy and the OpenCitations privacy policy, as well as the AI2 Privacy Policy covering Semantic Scholar.
Citation data
Add a list of citing articles from and to record detail pages.
load citations from opencitations.net
Privacy notice: By enabling the option above, your browser will contact the API of opencitations.net and semanticscholar.org to load citation information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the OpenCitations privacy policy as well as the AI2 Privacy Policy covering Semantic Scholar.
OpenAlex data
Load additional information about publications from .
Privacy notice: By enabling the option above, your browser will contact the API of openalex.org to load additional information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the information given by OpenAlex.
last updated on 2024-11-08 21:32 CET by the dblp team
all metadata released as open data under CC0 1.0 license
see also: Terms of Use | Privacy Policy | Imprint