default search action
Steffen Udluft
Person information
Refine list
refinements active!
zoomed in on ?? of ?? records
view refined list in
export refined list as
2020 – today
- 2024
- [i20]Simon Eisenmann, Daniel Hein, Steffen Udluft, Thomas A. Runkler:
Model-based Offline Quantum Reinforcement Learning. CoRR abs/2404.10017 (2024) - [i19]Philipp Wissmann, Daniel Hein, Steffen Udluft, Volker Tresp:
Why long model-based rollouts are no reason for bad Q-value estimates. CoRR abs/2407.11751 (2024) - 2023
- [j9]Simon Wiedemann, Daniel Hein, Steffen Udluft, Christian B. Mendl:
Quantum Policy Iteration via Amplitude Estimation and Grover Search - Towards Quantum Advantage for Reinforcement Learning. Trans. Mach. Learn. Res. 2023 (2023) - [c34]Phillip Swazinna, Steffen Udluft, Thomas A. Runkler:
Automatic Trade-off Adaptation in Offline RL. ESANN 2023 - [c33]Phillip Swazinna, Steffen Udluft, Thomas A. Runkler:
User-Interactive Offline Reinforcement Learning. ICLR 2023 - [c32]Volker Tresp, Steffen Udluft, Daniel Hein, Werner Hauptmann, Martin Leib, Christopher Mutschler, Daniel D. Scherer, Wolfgang Mauerer:
Workshop Summary: Quantum Machine Learning. QCE 2023: 1-3 - [c31]Marc Weber, Phillip Swazinna, Daniel Hein, Steffen Udluft, Volkmar Sterzing:
Learning Control Policies for Variable Objectives from Offline Data. SSCI 2023: 1674-1681 - [i18]Phillip Swazinna, Steffen Udluft, Thomas A. Runkler:
Automatic Trade-off Adaptation in Offline RL. CoRR abs/2306.09744 (2023) - [i17]Marc Weber, Phillip Swazinna, Daniel Hein, Steffen Udluft, Volkmar Sterzing:
Learning Control Policies for Variable Objectives from Offline Data. CoRR abs/2308.06127 (2023) - 2022
- [c30]Philipp Scholl, Felix Dietrich, Clemens Otte, Steffen Udluft:
Safe Policy Improvement Approaches and Their Limitations. ICAART (Revised Selected Paper 2022: 74-98 - [c29]Philipp Scholl, Felix Dietrich, Clemens Otte, Steffen Udluft:
Safe Policy Improvement Approaches on Discrete Markov Decision Processes. ICAART (2) 2022: 142-151 - [i16]Phillip Swazinna, Steffen Udluft, Daniel Hein, Thomas A. Runkler:
Comparing Model-free and Model-based Algorithms for Offline Reinforcement Learning. CoRR abs/2201.05433 (2022) - [i15]Philipp Scholl, Felix Dietrich, Clemens Otte, Steffen Udluft:
Safe Policy Improvement Approaches on Discrete Markov Decision Processes. CoRR abs/2201.12175 (2022) - [i14]Phillip Swazinna, Steffen Udluft, Thomas A. Runkler:
User-Interactive Offline Reinforcement Learning. CoRR abs/2205.10629 (2022) - [i13]Simon Wiedemann, Daniel Hein, Steffen Udluft, Christian B. Mendl:
Quantum Policy Iteration via Amplitude Estimation and Grover Search - Towards Quantum Advantage for Reinforcement Learning. CoRR abs/2206.04741 (2022) - [i12]Philipp Scholl, Felix Dietrich, Clemens Otte, Steffen Udluft:
Safe Policy Improvement Approaches and their Limitations. CoRR abs/2208.00724 (2022) - 2021
- [j8]Phillip Swazinna, Steffen Udluft, Thomas A. Runkler:
Overcoming model bias for robust offline deep reinforcement learning. Eng. Appl. Artif. Intell. 104: 104366 (2021) - [c28]Phillip Swazinna, Steffen Udluft, Daniel Hein, Thomas A. Runkler:
Behavior Constraining in Weight Space for Offline Reinforcement Learning. ESANN 2021 - [c27]Phillip Swazinna, Steffen Udluft, Thomas A. Runkler:
Measuring Data Quality for Dataset Selection in Offline Reinforcement Learning. SSCI 2021: 1-8 - [i11]Phillip Swazinna, Steffen Udluft, Daniel Hein, Thomas A. Runkler:
Behavior Constraining in Weight Space for Offline Reinforcement Learning. CoRR abs/2107.05479 (2021) - [i10]Phillip Swazinna, Steffen Udluft, Thomas A. Runkler:
Measuring Data Quality for Dataset Selection in Offline Reinforcement Learning. CoRR abs/2111.13461 (2021) - 2020
- [i9]Phillip Swazinna, Steffen Udluft, Thomas A. Runkler:
Overcoming Model Bias for Robust Offline Deep Reinforcement Learning. CoRR abs/2008.05533 (2020)
2010 – 2019
- 2019
- [c26]Daniel Hein, Steffen Udluft, Thomas A. Runkler:
Generating interpretable reinforcement learning policies using genetic programming. GECCO (Companion) 2019: 23-24 - 2018
- [j7]Daniel Hein, Steffen Udluft, Thomas A. Runkler:
Interpretable policies for reinforcement learning by genetic programming. Eng. Appl. Artif. Intell. 76: 158-169 (2018) - [c25]Stefan Depeweg, José Miguel Hernández-Lobato, Steffen Udluft, Thomas A. Runkler:
Sensitivity analysis for predictive uncertainty. ESANN 2018 - [c24]Daniel Hein, Steffen Udluft, Thomas A. Runkler:
Generating interpretable fuzzy controllers using particle swarm optimization and genetic programming. GECCO (Companion) 2018: 1268-1275 - [c23]Stefan Depeweg, José Miguel Hernández-Lobato, Finale Doshi-Velez, Steffen Udluft:
Decomposition of Uncertainty in Bayesian Deep Learning for Efficient and Risk-sensitive Learning. ICML 2018: 1192-1201 - [i8]Daniel Hein, Steffen Udluft, Thomas A. Runkler:
Generating Interpretable Fuzzy Controllers using Particle Swarm Optimization and Genetic Programming. CoRR abs/1804.10960 (2018) - 2017
- [j6]Daniel Hein, Alexander Hentschel, Thomas A. Runkler, Steffen Udluft:
Particle swarm optimization for generating interpretable fuzzy reinforcement learning policies. Eng. Appl. Artif. Intell. 65: 87-98 (2017) - [c22]Stefan Depeweg, José Miguel Hernández-Lobato, Finale Doshi-Velez, Steffen Udluft:
Learning and Policy Search in Stochastic Dynamical Systems with Bayesian Neural Networks. ICLR (Poster) 2017 - [c21]Daniel Hein, Steffen Udluft, Michel Tokic, Alexander Hentschel, Thomas A. Runkler, Volkmar Sterzing:
Batch reinforcement learning on the industrial benchmark: First experiences. IJCNN 2017: 4214-4221 - [c20]Daniel Hein, Stefan Depeweg, Michel Tokic, Steffen Udluft, Alexander Hentschel, Thomas A. Runkler, Volkmar Sterzing:
A benchmark environment motivated by industrial control problems. SSCI 2017: 1-8 - [i7]Daniel Hein, Steffen Udluft, Michel Tokic, Alexander Hentschel, Thomas A. Runkler, Volkmar Sterzing:
Batch Reinforcement Learning on the Industrial Benchmark: First Experiences. CoRR abs/1705.07262 (2017) - [i6]Daniel Hein, Stefan Depeweg, Michel Tokic, Steffen Udluft, Alexander Hentschel, Thomas A. Runkler, Volkmar Sterzing:
A Benchmark Environment Motivated by Industrial Control Problems. CoRR abs/1709.09480 (2017) - [i5]Stefan Depeweg, José Miguel Hernández-Lobato, Finale Doshi-Velez, Steffen Udluft:
Decomposition of Uncertainty for Active Learning and Reliable Reinforcement Learning in Stochastic Systems. CoRR abs/1710.07283 (2017) - [i4]Daniel Hein, Steffen Udluft, Thomas A. Runkler:
Interpretable Policies for Reinforcement Learning by Genetic Programming. CoRR abs/1712.04170 (2017) - 2016
- [j5]Daniel Hein, Alexander Hentschel, Thomas A. Runkler, Steffen Udluft:
Reinforcement Learning with Particle Swarm Optimization Policy (PSO-P) in Continuous State and Action Spaces. Int. J. Swarm Intell. Res. 7(3): 23-42 (2016) - [i3]Stefan Depeweg, José Miguel Hernández-Lobato, Finale Doshi-Velez, Steffen Udluft:
Learning and Policy Search in Stochastic Dynamical Systems with Bayesian Neural Networks. CoRR abs/1605.07127 (2016) - [i2]Daniel Hein, Alexander Hentschel, Volkmar Sterzing, Michel Tokic, Steffen Udluft:
Introduction to the "Industrial Benchmark". CoRR abs/1610.03793 (2016) - [i1]Daniel Hein, Alexander Hentschel, Thomas A. Runkler, Steffen Udluft:
Particle Swarm Optimization for Generating Fuzzy Reinforcement Learning Policies. CoRR abs/1610.05984 (2016) - 2015
- [j4]Sigurd Spieckermann, Siegmund Düll, Steffen Udluft, Alexander Hentschel, Thomas A. Runkler:
Exploiting similarity in system identification tasks with recurrent neural networks. Neurocomputing 169: 343-349 (2015) - 2014
- [c19]Sigurd Spieckermann, Siegmund Düll, Steffen Udluft, Alexander Hentschel, Thomas A. Runkler:
Exploiting similarity in system identification tasks with recurrent neural networks. ESANN 2014 - [c18]Sigurd Spieckermann, Siegmund Düll, Steffen Udluft, Thomas A. Runkler:
Regularized Recurrent Neural Networks for Data Efficient Dual-Task Learning. ICANN 2014: 17-24 - 2013
- [c17]Siegmund Duell, Steffen Udluft:
Ensembles for Continuous Actions in Reinforcement Learning. ESANN 2013 - 2012
- [j3]Thomas A. Runkler, Steffen Udluft, Siegmund Düll:
Datenbasierte Optimalsteuerung mit neuronalen Netzen und dateneffizientem Reinforcement Learning. Autom. 60(10): 641-647 (2012) - [c16]Siegmund Duell, Lina Weichbrodt, Alexander Hans, Steffen Udluft:
Recurrent Neural State Estimation in Domains with Long-Term Dependencies. ESANN 2012 - [p1]Siegmund Duell, Steffen Udluft, Volkmar Sterzing:
Solving Partially Observable Reinforcement Learning Problems with Recurrent Neural Networks. Neural Networks: Tricks of the Trade (2nd ed.) 2012: 709-733 - 2011
- [c15]Alexander Hans, Siegmund Duell, Steffen Udluft:
Agent self-assessment: Determining policy quality without execution. ADPRL 2011: 84-90 - [c14]Alexander Hans, Steffen Udluft:
Ensemble Usage for More Reliable Policy Identification in Reinforcement Learning. ESANN 2011 - 2010
- [c13]Alexander Hans, Steffen Udluft:
Uncertainty Propagation for Efficient Exploration in Reinforcement Learning. ECAI 2010: 361-366 - [c12]Siegmund Duell, Alexander Hans, Steffen Udluft:
The Markov Decision Process Extraction Network. ESANN 2010 - [c11]Alexander Hans, Steffen Udluft:
Ensembles of Neural Networks for Robust Reinforcement Learning. ICMLA 2010: 401-406
2000 – 2009
- 2009
- [j2]Volkmar Sterzing, Steffen Udluft:
Dateneffizientes Reinforcement-Learning. Künstliche Intell. 23(3): 19-22 (2009) - [c10]Alexander Hans, Steffen Udluft:
Efficient Uncertainty Propagation for Reinforcement Learning with Limited Data. ICANN (1) 2009: 70-79 - 2008
- [j1]Anton Maximilian Schäfer, Steffen Udluft, Hans-Georg Zimmermann:
Learning long-term dependencies with recurrent neural networks. Neurocomputing 71(13-15): 2481-2488 (2008) - [c9]Alexander Hans, Daniel Schneegaß, Anton Maximilian Schäfer, Steffen Udluft:
Safe exploration for reinforcement learning. ESANN 2008: 143-148 - [c8]Daniel Schneegaß, Steffen Udluft, Thomas Martinetz:
Uncertainty propagation for quality assurance in Reinforcement Learning. IJCNN 2008: 2588-2595 - 2007
- [c7]Daniel Schneegaß, Steffen Udluft, Thomas Martinetz:
Neural Rewards Regression for near-optimal policy identification in Markovian and partial observable environments. ESANN 2007: 301-306 - [c6]Anton Maximilian Schäfer, Steffen Udluft, Hans-Georg Zimmermann:
The Recurrent Control Neural Network. ESANN 2007: 319-324 - [c5]Daniel Schneegaß, Steffen Udluft, Thomas Martinetz:
Explicit Kernel Rewards Regression for data-efficient near-optimal policy identification. ESANN 2007: 337-342 - [c4]Daniel Schneegaß, Steffen Udluft, Thomas Martinetz:
Improving Optimality of Neural Rewards Regression for Data-Efficient Batch Near-Optimal Policy Identification. ICANN (1) 2007: 109-118 - [c3]Anton Maximilian Schäfer, Daniel Schneegaß, Volkmar Sterzing, Steffen Udluft:
A Neural Reinforcement Learning Approach to Gas Turbine Control. IJCNN 2007: 1691-1696 - 2006
- [c2]Daniel Schneegaß, Steffen Udluft, Thomas Martinetz:
Kernel Rewards Regression: An Information Efficient Batch Policy Iteration Approach. Artificial Intelligence and Applications 2006: 428-433 - [c1]Anton Maximilian Schäfer, Steffen Udluft, Hans-Georg Zimmermann:
Learning Long Term Dependencies with Recurrent Neural Networks. ICANN (1) 2006: 71-80
Coauthor Index
manage site settings
To protect your privacy, all features that rely on external API calls from your browser are turned off by default. You need to opt-in for them to become active. All settings here will be stored as cookies with your web browser. For more information see our F.A.Q.
Unpaywalled article links
Add open access links from to the list of external document links (if available).
Privacy notice: By enabling the option above, your browser will contact the API of unpaywall.org to load hyperlinks to open access articles. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Unpaywall privacy policy.
Archived links via Wayback Machine
For web page which are no longer available, try to retrieve content from the of the Internet Archive (if available).
Privacy notice: By enabling the option above, your browser will contact the API of archive.org to check for archived content of web pages that are no longer available. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Internet Archive privacy policy.
Reference lists
Add a list of references from , , and to record detail pages.
load references from crossref.org and opencitations.net
Privacy notice: By enabling the option above, your browser will contact the APIs of crossref.org, opencitations.net, and semanticscholar.org to load article reference information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Crossref privacy policy and the OpenCitations privacy policy, as well as the AI2 Privacy Policy covering Semantic Scholar.
Citation data
Add a list of citing articles from and to record detail pages.
load citations from opencitations.net
Privacy notice: By enabling the option above, your browser will contact the API of opencitations.net and semanticscholar.org to load citation information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the OpenCitations privacy policy as well as the AI2 Privacy Policy covering Semantic Scholar.
OpenAlex data
Load additional information about publications from .
Privacy notice: By enabling the option above, your browser will contact the API of openalex.org to load additional information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the information given by OpenAlex.
last updated on 2024-08-25 20:04 CEST by the dblp team
all metadata released as open data under CC0 1.0 license
see also: Terms of Use | Privacy Policy | Imprint