default search action
Kees Joost Batenburg
Person information
- affiliation: Centrum Wiskunde & Informatica (CWI), Amsterdam, The Netherland
Refine list
refinements active!
zoomed in on ?? of ?? records
view refined list in
export refined list as
2020 – today
- 2024
- [j62]Serban Vadineanu, Daniël Maria Pelt, Oleh Dzyubachyk, Kees Joost Batenburg:
Reducing Manual Annotation Costs for Cell Segmentation by Upgrading Low-Quality Annotations. J. Imaging 10(7): 172 (2024) - [j61]Ajinkya Kadu, Felix Lucka, Kees Joost Batenburg:
Single-Shot Tomography of Discrete Dynamic Objects. IEEE Trans. Computational Imaging 10: 941-952 (2024) - [i32]Jiayang Shi, Junyi Zhu, Daniël Maria Pelt, Kees Joost Batenburg, Matthew B. Blaschko:
Implicit Neural Representations for Robust Joint Sparse-View CT Reconstruction. CoRR abs/2405.02509 (2024) - [i31]Jiayang Shi, Daniël Maria Pelt, Kees Joost Batenburg:
SR4ZCT: Self-supervised Through-plane Resolution Enhancement for CT Images with Arbitrary Resolution and Overlap. CoRR abs/2405.02515 (2024) - [i30]Maximilian B. Kiss, Ander Biguri, Carola-Bibiane Schönlieb, Kees Joost Batenburg, Felix Lucka:
Learned denoising with simulated and experimental low-dose CT data. CoRR abs/2408.08115 (2024) - 2023
- [j60]Francien G. Bossema, Paul J. C. van Laar, Kimberly Meechan, Daniel O'Flynn, Joanne Dyer, Tristan van Leeuwen, Suzan Meijer, Erma Hermens, Kees Joost Batenburg:
Inside out: Fusing 3D imaging modalities for the internal and external investigation of multi-material museum objects. Digit. Appl. Archaeol. Cult. Heritage 31: 00296 (2023) - [j59]Richard Arnoud Schoonhoven, Ben van Werkhoven, Kees Joost Batenburg:
Benchmarking Optimization Algorithms for Auto-Tuning GPU Kernels. IEEE Trans. Evol. Comput. 27(3): 550-564 (2023) - [c36]Serban Vadineanu, Daniël Maria Pelt, Oleh Dzyubachyk, Kees Joost Batenburg:
Reducing Manual Annotation Costs for Cell Segmentation by Upgrading Low-Quality Annotations. MILLanD@MICCAI 2023: 3-13 - [c35]Jiayang Shi, Daniël Maria Pelt, Kees Joost Batenburg:
SR4ZCT: Self-supervised Through-Plane Resolution Enhancement for CT Images with Arbitrary Resolution and Overlap. MLMI@MICCAI (1) 2023: 52-61 - [i29]Timothy M. Craig, Ajinkya Kadu, Kees Joost Batenburg, Sara Bals:
Real-Time Tilt Undersampling Optimization during Electron Tomography of Beam Sensitive Samples using Golden Ratio Scanning and RECAST3D. CoRR abs/2304.01221 (2023) - [i28]Vladyslav Andriiashen, Robert van Liere, Tristan van Leeuwen, Kees Joost Batenburg:
Quantifying the effect of X-ray scattering for data generation in real-time defect detection. CoRR abs/2305.12822 (2023) - [i27]Maximilian B. Kiss, Sophia Bethany Coban, Kees Joost Batenburg, Tristan van Leeuwen, Felix Lucka:
2DeteCT - A large 2D expandable, trainable, experimental Computed Tomography dataset for machine learning. CoRR abs/2306.05907 (2023) - [i26]Jiayang Shi, Daniël Maria Pelt, Kees Joost Batenburg:
Multi-stage Deep Learning Artifact Reduction for Computed Tomography. CoRR abs/2309.00494 (2023) - [i25]Ajinkya Kadu, Felix Lucka, Kees Joost Batenburg:
Single-shot Tomography of Discrete Dynamic Objects. CoRR abs/2311.05269 (2023) - 2022
- [j58]Mathé T. Zeegers, Tristan van Leeuwen, Daniël Maria Pelt, Sophia Bethany Coban, Robert van Liere, Kees Joost Batenburg:
A tomographic workflow to enable deep learning for X-ray based foreign object detection. Expert Syst. Appl. 206: 117768 (2022) - [j57]Dirk Elias Schut, Kees Joost Batenburg, Robert van Liere, Tristan van Leeuwen:
TOP-CT: Trajectory With Overlapping Projections X-Ray Computed Tomography. IEEE Trans. Computational Imaging 8: 598-608 (2022) - [j56]Poulami Somanya Ganguly, Felix Lucka, Holger Kohr, Erik Franken, Hermen Jan Hupkes, Kees Joost Batenburg:
SparseAlign: A Grid-Free Algorithm for Automatic Marker Localization and Deformation Estimation in Cryo-Electron Tomography. IEEE Trans. Computational Imaging 8: 651-665 (2022) - [c34]Serban Vadineanu, Daniël Maria Pelt, Oleh Dzyubachyk, Kees Joost Batenburg:
An Analysis of the Impact of Annotation Errors on the Accuracy of Deep Learning for Cell Segmentation. MIDL 2022: 1251-1267 - [c33]Richard Schoonhoven, Bram Veenboer, Ben van Werkhoven, Kees Joost Batenburg:
Going green: optimizing GPUs for energy efficiency through model-steered auto-tuning. PMBS@SC 2022: 48-59 - [i24]Poulami Somanya Ganguly, Felix Lucka, Holger Kohr, Erik Franken, Hermen Jan Hupkes, Kees Joost Batenburg:
SparseAlign: A Super-Resolution Algorithm for Automatic Marker Localization and Deformation Estimation in Cryo-Electron Tomography. CoRR abs/2201.08706 (2022) - [i23]Mathé T. Zeegers, Tristan van Leeuwen, Daniël Maria Pelt, Sophia Bethany Coban, Robert van Liere, Kees Joost Batenburg:
A tomographic workflow to enable deep learning for X-ray based foreign object detection. CoRR abs/2201.12184 (2022) - [i22]Patrick Echtenbruck, Martina Echtenbruck, Kees Joost Batenburg, Thomas Bäck, Boris Naujoks, Michael Emmerich:
Optimally Weighted Ensembles of Regression Models: Exact Weight Optimization and Applications. CoRR abs/2206.11263 (2022) - [i21]Richard Schoonhoven, Ben van Werkhoven, Kees Joost Batenburg:
Benchmarking optimization algorithms for auto-tuning GPU kernels. CoRR abs/2210.01465 (2022) - [i20]Richard Schoonhoven, Bram Veenboer, Ben van Werkhoven, Kees Joost Batenburg:
Going green: optimizing GPUs for energy efficiency through model-steered auto-tuning. CoRR abs/2211.07260 (2022) - 2021
- [j55]Jordi Minnema, Jan Wolff, Juha Koivisto, Felix Lucka, Kees Joost Batenburg, Tymour Forouzanfar, Maureen van Eijnatten:
Comparison of convolutional neural network training strategies for cone-beam CT image segmentation. Comput. Methods Programs Biomed. 207: 106192 (2021) - [j54]Maureen van Eijnatten, Leonardo Rundo, Kees Joost Batenburg, Felix Lucka, Emma Beddowes, Carlos Caldas, Ferdia A. Gallagher, Evis Sala, Carola-Bibiane Schönlieb, Ramona Woitek:
3D deformable registration of longitudinal abdominopelvic CT images using unsupervised deep learning. Comput. Methods Programs Biomed. 208: 106261 (2021) - [j53]Johannes Leuschner, Maximilian Schmidt, Poulami Somanya Ganguly, Vladyslav Andriiashen, Sophia Bethany Coban, Alexander Denker, Dominik F. Bauer, Amir Hadjifaradji, Kees Joost Batenburg, Peter Maass, Maureen van Eijnatten:
Quantitative Comparison of Deep Learning-Based Image Reconstruction Methods for Low-Dose and Sparse-Angle CT Applications. J. Imaging 7(3): 44 (2021) - [j52]Vladyslav Andriiashen, Robert van Liere, Tristan van Leeuwen, Kees Joost Batenburg:
Unsupervised Foreign Object Detection Based on Dual-Energy Absorptiometry in the Food Industry. J. Imaging 7(7): 104 (2021) - [j51]Dzemila Sero, Isabelle Garachon, Erma Hermens, Robert van Liere, Kees Joost Batenburg:
The Study of Three-Dimensional Fingerprint Recognition in Cultural Heritage: Trends and Challenges. ACM Journal on Computing and Cultural Heritage 14(4): 51:1-51:20 (2021) - [j50]Marinus J. Lagerwerf, Allard A. Hendriksen, Jan-Willem Buurlage, Kees Joost Batenburg:
Noise2Filter: fast, self-supervised learning and real-time reconstruction for 3D computed tomography. Mach. Learn. Sci. Technol. 2(1): 15012 (2021) - [i19]Poulami Somanya Ganguly, Daniël Maria Pelt, Doga Gürsoy, Francesco De Carlo, Kees Joost Batenburg:
Improving reproducibility in synchrotron tomography using implementation-adapted filters. CoRR abs/2103.08288 (2021) - [i18]Vladyslav Andriiashen, Robert van Liere, Tristan van Leeuwen, Kees Joost Batenburg:
Unsupervised foreign object detection based on dual-energy absorptiometry in the food industry. CoRR abs/2104.05326 (2021) - [i17]Mathé T. Zeegers, Ajinkya Kadu, Tristan van Leeuwen, Kees Joost Batenburg:
ADJUST: A Dictionary-Based Joint Reconstruction and Unmixing Method for Spectral Tomography. CoRR abs/2112.11406 (2021) - 2020
- [j49]Marinus J. Lagerwerf, Willem Jan Palenstijn, Folkert Bleichrodt, Kees Joost Batenburg:
An Efficient Interpolation Approach for Exploring the Parameter Space of Regularized Tomography Algorithms. Fundam. Informaticae 172(2): 143-167 (2020) - [j48]Sophia Bethany Coban, Felix Lucka, Willem Jan Palenstijn, Denis Van Loo, Kees Joost Batenburg:
Explorative Imaging and Its Implementation at the FleX-ray Laboratory. J. Imaging 6(4): 18 (2020) - [j47]Mathé T. Zeegers, Daniël Maria Pelt, Tristan van Leeuwen, Robert van Liere, Kees Joost Batenburg:
Task-Driven Learned Hyperspectral Data Reduction Using End-to-End Supervised Deep Learning. J. Imaging 6(12): 132 (2020) - [j46]Marinus J. Lagerwerf, Daniël Maria Pelt, Willem Jan Palenstijn, Kees Joost Batenburg:
A Computationally Efficient Reconstruction Algorithm for Circular Cone-Beam Computed Tomography Using Shallow Neural Networks. J. Imaging 6(12): 135 (2020) - [j45]Nicola Viganò, Felix Lucka, Ombeline de La Rochefoucauld, Sophia Bethany Coban, Robert van Liere, Marta Fajardo, Philippe Zeitoun, Kees Joost Batenburg:
Emulation of X-ray Light-Field Cameras. J. Imaging 6(12): 138 (2020) - [j44]A. Kostenko, Willem Jan Palenstijn, Sophia Bethany Coban, Allard A. Hendriksen, Robert van Liere, Kees Joost Batenburg:
Prototyping X-ray tomographic reconstruction pipelines with FleXbox. SoftwareX 11: 100364 (2020) - [j43]Marinus J. Lagerwerf, Willem Jan Palenstijn, Holger Kohr, Kees Joost Batenburg:
Automated FDK-Filter Selection for Cone-Beam CT in Research Environments. IEEE Trans. Computational Imaging 6: 739-748 (2020) - [j42]Allard A. Hendriksen, Daniël Maria Pelt, Kees Joost Batenburg:
Noise2Inverse: Self-Supervised Deep Convolutional Denoising for Tomography. IEEE Trans. Computational Imaging 6: 1320-1335 (2020) - [c32]Poulami Somanya Ganguly, Felix Lucka, Hermen Jan Hupkes, Kees Joost Batenburg:
Atomic Super-Resolution Tomography. IWCIA 2020: 45-61 - [c31]Richard Schoonhoven, Jan-Willem Buurlage, Daniël Maria Pelt, Kees Joost Batenburg:
Real-time segmentation for tomographic imaging. MLSP 2020: 1-6 - [c30]Jan-Willem Buurlage, Rob H. Bisseling, Willem Jan Palenstijn, Kees Joost Batenburg:
A projection-based data partitioning method for distributed tomographic reconstruction. PP 2020: 58-68 - [i16]Allard A. Hendriksen, Daniël Maria Pelt, Kees Joost Batenburg:
Noise2Inverse: Self-supervised deep convolutional denoising for linear inverse problems in imaging. CoRR abs/2001.11801 (2020) - [i15]Poulami Somanya Ganguly, Felix Lucka, Hermen Jan Hupkes, Kees Joost Batenburg:
Atomic Super-Resolution Tomography. CoRR abs/2002.00710 (2020) - [i14]Maureen van Eijnatten, Leonardo Rundo, Kees Joost Batenburg, Felix Lucka, Emma Beddowes, Carlos Caldas, Ferdia A. Gallagher, Evis Sala, Carola-Bibiane Schönlieb, Ramona Woitek:
3D deformable registration of longitudinal abdominopelvic CT images using unsupervised deep learning. CoRR abs/2005.07545 (2020) - [i13]Georgios Pilikos, Lars Horchens, Kees Joost Batenburg, Tristan van Leeuwen, Felix Lucka:
Fast ultrasonic imaging using end-to-end deep learning. CoRR abs/2009.02194 (2020) - [i12]Georgios Pilikos, Lars Horchens, Kees Joost Batenburg, Tristan van Leeuwen, Felix Lucka:
Deep data compression for approximate ultrasonic image formation. CoRR abs/2009.02293 (2020) - [i11]Marinus J. Lagerwerf, Daniël Maria Pelt, Willem Jan Palenstijn, Kees Joost Batenburg:
A computationally efficient reconstruction algorithm for circular cone-beam computed tomography using shallow neural networks. CoRR abs/2010.00421 (2020) - [i10]Richard Schoonhoven, Allard A. Hendriksen, Daniël Maria Pelt, Kees Joost Batenburg:
LEAN: graph-based pruning for convolutional neural networks by extracting longest chains. CoRR abs/2011.06923 (2020) - [i9]Ajinkya Kadu, Tristan van Leeuwen, Kees Joost Batenburg:
CoShaRP: A Convex Program for Single-shot Tomographic Shape Sensing. CoRR abs/2012.04551 (2020) - [i8]Sophia Bethany Coban, Vladyslav Andriiashen, Poulami Somanya Ganguly, Maureen van Eijnatten, Kees Joost Batenburg:
Parallel-beam X-ray CT datasets of apples with internal defects and label balancing for machine learning. CoRR abs/2012.13346 (2020)
2010 – 2019
- 2019
- [j41]Jan-Willem Buurlage, Rob H. Bisseling, Kees Joost Batenburg:
A geometric partitioning method for distributed tomographic reconstruction. Parallel Comput. 81: 104-121 (2019) - [i7]Henri Der Sarkissian, Felix Lucka, Maureen van Eijnatten, Giulia Colacicco, Sophia Bethany Coban, Kees Joost Batenburg:
A Cone-Beam X-Ray CT Data Collection Designed for Machine Learning. CoRR abs/1905.04787 (2019) - 2018
- [j40]Henri Der Sarkissian, Nicola Viganò, Kees Joost Batenburg:
A Data Consistent Variational Segmentation Approach Suitable for Real-time Tomography. Fundam. Informaticae 163(1): 1-20 (2018) - [j39]Daniël Maria Pelt, Kees Joost Batenburg, James A. Sethian:
Improving Tomographic Reconstruction from Limited Data Using Mixed-Scale Dense Convolutional Neural Networks. J. Imaging 4(11): 128 (2018) - [c29]Mathé T. Zeegers, Felix Lucka, Kees Joost Batenburg:
A Multi-channel DART Algorithm. IWCIA 2018: 164-178 - [i6]Mathé T. Zeegers, Felix Lucka, Kees Joost Batenburg:
A Multi-channel DART Algorithm. CoRR abs/1808.09170 (2018) - [i5]Kees Joost Batenburg, Robert van Liere:
Computational 3D X-ray Imaging for the Food Industry. ERCIM News 2018(113) (2018) - 2017
- [j38]Daniil Kazantsev, Folkert Bleichrodt, Tristan van Leeuwen, Anders Kaestner, Philip J. Withers, Kees Joost Batenburg, Peter D. Lee:
A Novel Tomographic Reconstruction Method Based on the Robust Student's t Function For Suppressing Data Outliers. IEEE Trans. Computational Imaging 3(4): 682-693 (2017) - [c28]Axel Ringh, Xiaodong Zhuge, Willem Jan Palenstijn, Kees Joost Batenburg, Ozan Öktem:
High-Level Algorithm Prototyping: An Example Extending the TVR-DART Algorithm. DGCI 2017: 109-121 - [c27]Ajinkya Kadu, Tristan van Leeuwen, Kees Joost Batenburg:
A Parametric Level-Set Method for Partially Discrete Tomography. DGCI 2017: 122-134 - [i4]Ajinkya Kadu, Tristan van Leeuwen, Kees Joost Batenburg:
A parametric level-set method for partially discrete tomography. CoRR abs/1704.00568 (2017) - [i3]Kees Joost Batenburg, Tamás Szirányi:
Computational Imaging - Introduction to the Special Theme. ERCIM News 2017(108) (2017) - 2016
- [j37]Nicola Viganò, Kees Joost Batenburg, Wolfgang Ludwig:
An Orientation-space Super Sampling Technique for Six-dimensional Diffraction Contrast Tomography. Fundam. Informaticae 146(2): 219-230 (2016) - [j36]Folkert Bleichrodt, Tristan van Leeuwen, Willem Jan Palenstijn, Wim van Aarle, Jan Sijbers, Kees Joost Batenburg:
Easy implementation of advanced tomography algorithms using the ASTRA toolbox with Spot operators. Numer. Algorithms 71(3): 673-697 (2016) - [j35]Xiaodong Zhuge, Willem Jan Palenstijn, Kees Joost Batenburg:
TVR-DART: A More Robust Algorithm for Discrete Tomography From Limited Projection Data With Automated Gray Value Estimation. IEEE Trans. Image Process. 25(1): 455-468 (2016) - [c26]Kees Joost Batenburg, Leon S. Helwerda, Walter A. Kosters, Tim van der Meij:
Mobile Radio Tomography: Agent-Based Imaging. BNCAI 2016: 63-77 - [i2]Daniël Maria Pelt, Kees Joost Batenburg:
A method for locally approximating regularized iterative tomographic reconstruction methods. CoRR abs/1604.02292 (2016) - 2015
- [j34]Wagner Fortes, Kees Joost Batenburg:
Quality bounds for binary tomography with arbitrary projection matrices. Discret. Appl. Math. 183: 42-58 (2015) - [j33]Linda Plantagie, Kees Joost Batenburg:
Algebraic filter approach for fast approximation of nonlinear tomographic reconstruction methods. J. Electronic Imaging 24(1): 013026 (2015) - [j32]Geert Van Eyndhoven, Kees Joost Batenburg, Daniil Kazantsev, Vincent Van Nieuwenhove, Peter D. Lee, Katherine J. Dobson, Jan Sijbers:
An Iterative CT Reconstruction Algorithm for Fast Fluid Flow Imaging. IEEE Trans. Image Process. 24(11): 4446-4458 (2015) - [c25]Geert Van Eyndhoven, Kees Joost Batenburg, Jan Sijbers:
Region based 4D tomographic image reconstruction: Application to cardiac x-ray CT. ICIP 2015: 113-117 - [c24]Linda Plantagie, Wim van Aarle, Jan Sijbers, Kees Joost Batenburg:
Filtered backprojection using algebraic filters; application to biomedical micro-CT data. ISBI 2015: 1596-1599 - 2014
- [j31]Tom Roelandts, Kees Joost Batenburg, Arnold J. den Dekker, Jan Sijbers:
The reconstructed residual error: A novel segmentation evaluation measure for reconstructed images in tomography. Comput. Vis. Image Underst. 126: 28-37 (2014) - [j30]Folkert Bleichrodt, Frank Tabak, Kees Joost Batenburg:
SDART: An algorithm for discrete tomography from noisy projections. Comput. Vis. Image Underst. 129: 63-74 (2014) - [j29]Linda Plantagie, Kees Joost Batenburg:
Approximating Algebraic Tomography Methods by Filtered Backprojection: A Local Filter Approach. Fundam. Informaticae 135(1-2): 1-19 (2014) - [j28]Folkert Bleichrodt, Jan De Beenhouwer, Jan Sijbers, Kees Joost Batenburg:
Aligning Projection Images from Binary Volumes. Fundam. Informaticae 135(1-2): 21-42 (2014) - [j27]Geert Van Eyndhoven, Kees Joost Batenburg, Jan Sijbers:
Region-Based Iterative Reconstruction of Structurally Changing Objects in CT. IEEE Trans. Image Process. 23(2): 909-919 (2014) - [j26]Wim van Aarle, Kees Joost Batenburg, Gert Van Gompel, Elke Van de Casteele, Jan Sijbers:
Super-Resolution for Computed Tomography Based on Discrete Tomography. IEEE Trans. Image Process. 23(3): 1181-1193 (2014) - [j25]Daniël Maria Pelt, Kees Joost Batenburg:
Improving Filtered Backprojection Reconstruction by Data-Dependent Filtering. IEEE Trans. Image Process. 23(11): 4750-4762 (2014) - [c23]Tristan van Leeuwen, Kees Joost Batenburg:
Adaptive Grid Refinement for Discrete Tomography. DGCI 2014: 297-308 - 2013
- [j24]Kees Joost Batenburg, Willem Jan Palenstijn, Péter Balázs, Jan Sijbers:
Dynamic angle selection in binary tomography. Comput. Vis. Image Underst. 117(4): 306-318 (2013) - [j23]Kees Joost Batenburg, Wagner Fortes, Lajos Hajdu, Robert Tijdeman:
Bounds on the quality of reconstructed images in binary tomography. Discret. Appl. Math. 161(15): 2236-2251 (2013) - [j22]Hilde Segers, Willem Jan Palenstijn, Kees Joost Batenburg, Jan Sijbers:
Discrete Tomography in MRI: a Simulation Study. Fundam. Informaticae 125(3-4): 223-237 (2013) - [j21]Kees Joost Batenburg, Wagner Fortes, Robert Tijdeman:
Approximate Discrete Reconstruction Algorithm. Fundam. Informaticae 125(3-4): 239-259 (2013) - [j20]Karim Zarei Zefreh, Wim van Aarle, Kees Joost Batenburg, Jan Sijbers:
Discrete algebraic reconstruction technique: a new approach for superresolution reconstruction of license plates. J. Electronic Imaging 22(4): 041111 (2013) - [j19]Daniël Maria Pelt, Kees Joost Batenburg:
Fast Tomographic Reconstruction From Limited Data Using Artificial Neural Networks. IEEE Trans. Image Process. 22(12): 5238-5251 (2013) - [c22]Wagner Fortes, Kees Joost Batenburg:
A Method for Feature Detection in Binary Tomography. DGCI 2013: 372-382 - [c21]Nicola Viganò, Wolfgang Ludwig, Kees Joost Batenburg:
Discrete representation of local orientation in grains using diffraction contrast tomography. ISPA 2013: 594-599 - [c20]Folkert Bleichrodt, Kees Joost Batenburg:
Automatic Optimization of Alignment Parameters for Tomography Datasets. SCIA 2013: 489-500 - 2012
- [j18]Kees Joost Batenburg, Walter A. Kosters:
On the Difficulty of Nonograms. J. Int. Comput. Games Assoc. 35(4): 195-205 (2012) - [j17]Kees Joost Batenburg, Linda Plantagie:
Fast Approximation of Algebraic Reconstruction Methods for Tomography. IEEE Trans. Image Process. 21(8): 3648-3658 (2012) - [j16]Wim van Aarle, Kees Joost Batenburg, Jan Sijbers:
Automatic Parameter Estimation for the Discrete Algebraic Reconstruction Technique (DART). IEEE Trans. Image Process. 21(11): 4608-4621 (2012) - [c19]Geert Van Eyndhoven, Jan Sijbers, Kees Joost Batenburg:
Combined Motion Estimation and Reconstruction in Tomography. ECCV Workshops (1) 2012: 12-21 - [c18]Péter Balázs, Kees Joost Batenburg:
A Central Reconstruction Based Strategy for Selecting Projection Angles in Binary Tomography. ICIAR (1) 2012: 382-391 - 2011
- [j15]Kees Joost Batenburg, Wim van Aarle, Jan Sijbers:
A semi-automatic algorithm for grey level estimation in tomography. Pattern Recognit. Lett. 32(9): 1395-1405 (2011) - [j14]Kees Joost Batenburg, Jan Sijbers:
DART: A Practical Reconstruction Algorithm for Discrete Tomography. IEEE Trans. Image Process. 20(9): 2542-2553 (2011) - [j13]Wim van Aarle, Kees Joost Batenburg, Jan Sijbers:
Optimal Threshold Selection for Segmentation of Dense Homogeneous Objects in Tomographic Reconstructions. IEEE Trans. Medical Imaging 30(4): 980-989 (2011) - [c17]Wagner Fortes, Kees Joost Batenburg:
Error Bounds on the Reconstruction of Binary Images from Low Resolution Scans. CAIP (1) 2011: 152-160 - [c16]Kees Joost Batenburg, Wagner Fortes, Lajos Hajdu, Robert Tijdeman:
Bounds on the Difference between Reconstructions in Binary Tomography. DGCI 2011: 369-380 - [i1]Kees Joost Batenburg, Sandra Van Aert:
Three-Dimensional Reconstruction of a Nanoparticle at Atomic Resolution. ERCIM News 2011(86) (2011) - 2010
- [j12]Arjen Stolk, Kees Joost Batenburg:
An Algebraic Framework for Discrete Tomography: Revealing the Structure of Dependencies. SIAM J. Discret. Math. 24(3): 1056-1079 (2010) - [c15]Gert Van Gompel, Kees Joost Batenburg, Elke Van de Casteele, Wim van Aarle, Jan Sijbers:
A discrete tomography approach for superresolution micro-CT images: application to bone. ISBI 2010: 816-819
2000 – 2009
- 2009
- [j11]Kees Joost Batenburg, Jan Sijbers:
Generic iterative subset algorithms for discrete tomography. Discret. Appl. Math. 157(3): 438-451 (2009) - [j10]Kees Joost Batenburg, Walter A. Kosters:
Solving Nonograms by combining relaxations. Pattern Recognit. 42(8): 1672-1683 (2009) - [j9]Kees Joost Batenburg, Jan Sijbers:
Adaptive thresholding of tomograms by projection distance minimization. Pattern Recognit. 42(10): 2297-2305 (2009) - [j8]Kees Joost Batenburg, Jan Sijbers:
Optimal Threshold Selection for Tomogram Segmentation by Projection Distance Minimization. IEEE Trans. Medical Imaging 28(5): 676-686 (2009) - [c14]Kees Joost Batenburg, Wim van Aarle, Jan Sijbers:
Grey Level Estimation for Discrete Tomography. DGCI 2009: 517-529 - [c13]Sander van der Maar, Kees Joost Batenburg, Jan Sijbers:
Experiences with Cell-BE and GPU for Tomography. SAMOS 2009: 298-307 - 2008
- [j7]Kees Joost Batenburg:
A Network Flow Algorithm for Reconstructing Binary Images from Continuous X-rays. J. Math. Imaging Vis. 30(3): 231-248 (2008) - [j6]Kees Joost Batenburg, Antal Nagy, Maurice Nivat:
Preface. Theor. Comput. Sci. 406(1-2): 1 (2008) - [j5]Kees Joost Batenburg, Antal Nagy, Maurice Nivat:
In Memoriam Attila Kuba (1953-2006). Theor. Comput. Sci. 406(1-2): 2-7 (2008) - [c12]Kees Joost Batenburg, Jan Sijbers:
Selection of Local Thresholds for Tomogram Segmentation by Projection Distance Minimization. DGCI 2008: 380-391 - [c11]Wim van Aarle, Kees Joost Batenburg, Jan Sijbers:
Threshold Selection for Segmentation of Dense Objects in Tomograms. ISVC (1) 2008: 700-709 - [c10]Kees Joost Batenburg, Walter A. Kosters:
A Reasoning Framework for Solving Nonograms. IWCIA 2008: 372-383 - [c9]Rudolf Hanel, Kees Joost Batenburg, Steve De Backer, Paul Scheunders, Jan Sijbers:
Fast bias field reduction by localized Lloyd-Max quantization. Medical Imaging: Image Processing 2008: 69141A - 2007
- [j4]Kees Joost Batenburg:
A Network Flow Algorithm for Reconstructing Binary Images from Discrete X-rays. J. Math. Imaging Vis. 27(2): 175-191 (2007) - [c8]Kees Joost Batenburg, Jan Sijbers:
Optimal Threshold Selection for Tomogram Segmentation by Reprojection of the Reconstructed Image. CAIP 2007: 563-570 - [c7]Kees Joost Batenburg, Jan Sijbers:
Dart: A Fast Heuristic Algebraic Reconstruction Algorithm for Discrete Tomography. ICIP (4) 2007: 133-136 - [c6]Kees Joost Batenburg, Jan Sijbers:
Automatic multiple threshold scheme for segmentation of tomograms. Medical Imaging: Image Processing 2007: 65123D - 2006
- [c5]Kees Joost Batenburg:
A Network Flow Algorithm for Binary Image Reconstruction from Few Projections. DGCI 2006: 86-97 - [c4]Kees Joost Batenburg:
A Learning Classifier Approach to Tomography. ECAI 2006: 655-659 - [c3]Kees Joost Batenburg, Walter A. Kosters:
A Neural Network Approach to Real-Time Discrete Tomography. IWCIA 2006: 389-403 - 2005
- [j3]Kees Joost Batenburg:
An evolutionary algorithm for discrete tomography. Discret. Appl. Math. 151(1-3): 36-54 (2005) - [j2]Kees Joost Batenburg:
A new algorithm for 3D binary tomography. Electron. Notes Discret. Math. 20: 247-261 (2005) - [c2]Kees Joost Batenburg, Walter A. Kosters:
Neural Networks for Discrete Tomography. BNAIC 2005: 21-27 - 2004
- [c1]Kees Joost Batenburg, Willem Jan Palenstijn:
On the Reconstruction of Crystals Through Discrete Tomography. IWCIA 2004: 23-37 - 2003
- [j1]Kees Joost Batenburg:
Analysis and optimization of an algorithm for discrete tomography. Electron. Notes Discret. Math. 12: 35-46 (2003)
Coauthor Index
manage site settings
To protect your privacy, all features that rely on external API calls from your browser are turned off by default. You need to opt-in for them to become active. All settings here will be stored as cookies with your web browser. For more information see our F.A.Q.
Unpaywalled article links
Add open access links from to the list of external document links (if available).
Privacy notice: By enabling the option above, your browser will contact the API of unpaywall.org to load hyperlinks to open access articles. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Unpaywall privacy policy.
Archived links via Wayback Machine
For web page which are no longer available, try to retrieve content from the of the Internet Archive (if available).
Privacy notice: By enabling the option above, your browser will contact the API of archive.org to check for archived content of web pages that are no longer available. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Internet Archive privacy policy.
Reference lists
Add a list of references from , , and to record detail pages.
load references from crossref.org and opencitations.net
Privacy notice: By enabling the option above, your browser will contact the APIs of crossref.org, opencitations.net, and semanticscholar.org to load article reference information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Crossref privacy policy and the OpenCitations privacy policy, as well as the AI2 Privacy Policy covering Semantic Scholar.
Citation data
Add a list of citing articles from and to record detail pages.
load citations from opencitations.net
Privacy notice: By enabling the option above, your browser will contact the API of opencitations.net and semanticscholar.org to load citation information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the OpenCitations privacy policy as well as the AI2 Privacy Policy covering Semantic Scholar.
OpenAlex data
Load additional information about publications from .
Privacy notice: By enabling the option above, your browser will contact the API of openalex.org to load additional information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the information given by OpenAlex.
last updated on 2024-10-07 22:09 CEST by the dblp team
all metadata released as open data under CC0 1.0 license
see also: Terms of Use | Privacy Policy | Imprint