default search action
Amri Napolitano
Person information
Refine list
refinements active!
zoomed in on ?? of ?? records
view refined list in
export refined list as
2010 – 2019
- 2018
- [c92]Richard A. Bauder, Taghi M. Khoshgoftaar, Amri Napolitano:
Fraud Detection with a Limited Number of Known Fraudulent Medicare Providers. FLAIRS 2018: 299-304 - 2016
- [c91]Maryam M. Najafabadi, Taghi M. Khoshgoftaar, Amri Napolitano, Charles Wheelus:
RUDY Attack: Detection at the Network Level and Its Important Features. FLAIRS 2016: 288-293 - [c90]Joseph D. Prusa, Taghi M. Khoshgoftaar, Amri Napolitano:
Necessity of Feature Selection when Augmenting Tweet Sentiment Feature Spaces with Emoticons. FLAIRS 2016: 614-620 - [c89]Alireza Fazelpour, Taghi M. Khoshgoftaar, David J. Dittman, Amri Napolitano:
Investigating the Variation of Ensemble Size on Bagging-Based Classifier Performance in Imbalanced Bioinformatics Datasets. IRI 2016: 377-383 - [p1]David J. Dittman, Taghi M. Khoshgoftaar, Amri Napolitano:
Is Data Sampling Required When Using Random Forest for Classification on Imbalanced Bioinformatics Data? Theoretical Information Reuse and Integration 2016: 157-171 - 2015
- [j16]Huanjing Wang, Taghi M. Khoshgoftaar, Amri Napolitano:
An Empirical Investigation on Wrapper-Based Feature Selection for Predicting Software Quality. Int. J. Softw. Eng. Knowl. Eng. 25(1): 93-114 (2015) - [j15]Kehan Gao, Taghi M. Khoshgoftaar, Amri Napolitano:
Investigating Two Approaches for Adding Feature Ranking to Sampled Ensemble Learning for Software Quality Estimation. Int. J. Softw. Eng. Knowl. Eng. 25(1): 115-146 (2015) - [j14]Kehan Gao, Taghi M. Khoshgoftaar, Amri Napolitano:
Aggregating Data Sampling with Feature Subset Selection to Address Skewed Software Defect Data. Int. J. Softw. Eng. Knowl. Eng. 25(9-10): 1531-1550 (2015) - [c88]David J. Dittman, Taghi M. Khoshgoftaar, Amri Napolitano:
Selecting the Appropriate Ensemble Learning Approach for Balanced Bioinformatics Data. FLAIRS 2015: 329-334 - [c87]Alireza Fazelpour, Taghi M. Khoshgoftaar, David J. Dittman, Amri Napolitano:
Does the Inclusion of Data Sampling Improve the Performance of Boosting Algorithms on Imbalanced Bioinformatics Data? ICMLA 2015: 527-534 - [c86]Joseph D. Prusa, Taghi M. Khoshgoftaar, Amri Napolitano:
Utilizing Ensemble, Data Sampling and Feature Selection Techniques for Improving Classification Performance on Tweet Sentiment Data. ICMLA 2015: 535-542 - [c85]Alireza Fazelpour, Taghi M. Khoshgoftaar, David J. Dittman, Amri Napolitano:
Investigating New Bootstrapping Approaches of Bagging Classifiers to Account for Class Imbalance in Bioinformatics Datasets. ICMLA 2015: 987-994 - [c84]Joseph D. Prusa, Taghi M. Khoshgoftaar, Amri Napolitano:
Using Feature Selection in Combination with Ensemble Learning Techniques to Improve Tweet Sentiment Classification Performance. ICTAI 2015: 186-193 - [c83]Taghi M. Khoshgoftaar, Alireza Fazelpour, David J. Dittman, Amri Napolitano:
Ensemble vs. Data Sampling: Which Option Is Best Suited to Improve Classification Performance of Imbalanced Bioinformatics Data? ICTAI 2015: 705-712 - [c82]Alireza Fazelpour, Taghi M. Khoshgoftaar, David J. Dittman, Amri Napolitano:
Choosing an Appropriate Ensemble Classifier for Balanced Bioinformatics Data. IRI 2015: 17-24 - [c81]Joseph D. Prusa, Taghi M. Khoshgoftaar, David J. Dittman, Amri Napolitano:
Using Random Undersampling to Alleviate Class Imbalance on Tweet Sentiment Data. IRI 2015: 197-202 - [c80]Taghi M. Khoshgoftaar, Alireza Fazelpour, David J. Dittman, Amri Napolitano:
Alterations to the Bootstrapping Process within Random Forest: A Case Study on Imbalanced Bioinformatics Data. IRI 2015: 342-348 - [c79]David J. Dittman, Taghi M. Khoshgoftaar, Amri Napolitano:
The Effect of Data Sampling When Using Random Forest on Imbalanced Bioinformatics Data. IRI 2015: 457-463 - [c78]Huanjing Wang, Taghi M. Khoshgoftaar, Amri Napolitano:
Stability of Three Forms of Feature Selection Methods on Software Engineering Data. SEKE 2015: 385-390 - [c77]Kehan Gao, Taghi M. Khoshgoftaar, Amri Napolitano:
Combining Feature Subset Selection and Data Sampling for Coping with Highly Imbalanced Software Data. SEKE 2015: 439-444 - 2014
- [j13]Kehan Gao, Taghi M. Khoshgoftaar, Amri Napolitano:
The Use of Ensemble-Based Data Preprocessing Techniques for Software Defect Prediction. Int. J. Softw. Eng. Knowl. Eng. 24(9): 1229-1254 (2014) - [j12]Taghi M. Khoshgoftaar, Kehan Gao, Amri Napolitano, Randall Wald:
A comparative study of iterative and non-iterative feature selection techniques for software defect prediction. Inf. Syst. Frontiers 16(5): 801-822 (2014) - [c76]Randall Wald, Taghi M. Khoshgoftaar, Amri Napolitano:
Using Correlation-Based Feature Selection for a Diverse Collection of Bioinformatics Datasets. BIBE 2014: 156-162 - [c75]David J. Dittman, Taghi M. Khoshgoftaar, Amri Napolitano:
Selecting the Appropriate Data Sampling Approach for Imbalanced and High-Dimensional Bioinformatics Datasets. BIBE 2014: 304-310 - [c74]Randall Wald, Taghi M. Khoshgoftaar, Richard Zuech, Amri Napolitano:
Network Traffic Prediction Models for Near- and Long-Term Predictions. BIBE 2014: 362-368 - [c73]David J. Dittman, Taghi M. Khoshgoftaar, Amri Napolitano, Alireza Fazelpour:
Select-Bagging: Effectively Combining Gene Selection and Bagging for Balanced Bioinformatics Data. BIBE 2014: 413-419 - [c72]Taghi M. Khoshgoftaar, Alireza Fazelpour, David J. Dittman, Amri Napolitano:
Effects of the Use of Boosting on Classification Performance of Imbalanced Bioinformatics Datasets. BIBE 2014: 420-426 - [c71]David J. Dittman, Taghi M. Khoshgoftaar, Randall Wald, Amri Napolitano:
Comparison of Data Sampling Approaches for Imbalanced Bioinformatics Data. FLAIRS 2014 - [c70]Randall Wald, Taghi M. Khoshgoftaar, Amri Napolitano:
Optimizing Wrapper-Based Feature Selection for Use on Bioinformatics Data. FLAIRS 2014 - [c69]Ahmad Abu Shanab, Taghi M. Khoshgoftaar, Randall Wald, Amri Napolitano:
How ranker and learner choice affects classification performance on noisy bioinformatics data. IRI 2014: 277-282 - [c68]Huanjing Wang, Taghi M. Khoshgoftaar, Amri Napolitano:
Stability of filter- and wrapper-based software metric selection techniques. IRI 2014: 309-314 - [c67]Taghi M. Khoshgoftaar, Alireza Fazelpour, David J. Dittman, Amri Napolitano:
Classification performance of three approaches for combining data sampling and gene selection on bioinformatics data. IRI 2014: 315-321 - [c66]Taghi M. Khoshgoftaar, Kehan Gao, Amri Napolitano:
Improving software quality estimation by combining feature selection strategies with sampled ensemble learning. IRI 2014: 428-433 - [c65]Kehan Gao, Taghi M. Khoshgoftaar, Amri Napolitano:
Comparing Two Approaches for Adding Feature Ranking to Sampled Ensemble Learning for Software Quality Estimation. SEKE 2014: 280-285 - [c64]Huanjing Wang, Taghi M. Khoshgoftaar, Amri Napolitano:
Choosing the Best Classification Performance Metric for Wrapper-based Software Metric Selection for Defect Prediction. SEKE 2014: 540-545 - 2013
- [c63]David J. Dittman, Taghi M. Khoshgoftaar, Randall Wald, Amri Napolitano:
Classification Performance of Rank Aggregation Techniques for Ensemble Gene Selection. FLAIRS 2013 - [c62]Kehan Gao, Taghi M. Khoshgoftaar, Amri Napolitano:
Improving Software Quality Estimation by Combining Boosting and Feature Selection. ICMLA (1) 2013: 27-33 - [c61]Huanjing Wang, Taghi M. Khoshgoftaar, Amri Napolitano:
An Empirical Study on Wrapper-Based Feature Selection for Software Engineering Data. ICMLA (2) 2013: 84-89 - [c60]Randall Wald, Taghi M. Khoshgoftaar, David J. Dittman, Amri Napolitano:
Random Forest with 200 Selected Features: An Optimal Model for Bioinformatics Research. ICMLA (1) 2013: 154-160 - [c59]David J. Dittman, Taghi M. Khoshgoftaar, Randall Wald, Amri Napolitano:
Simplifying the Utilization of Machine Learning Techniques for Bioinformatics. ICMLA (2) 2013: 396-403 - [c58]Taghi M. Khoshgoftaar, David J. Dittman, Randall Wald, Amri Napolitano:
Contrasting Undersampled Boosting with Internal and External Feature Selection for Patient Response Datasets. ICMLA (2) 2013: 404-410 - [c57]Randall Wald, Taghi M. Khoshgoftaar, Ahmad Abu Shanab, Amri Napolitano:
Comparative Analysis on the Stability of Feature Selection Techniques Using Three Frameworks on Biological Datasets. ICMLA (1) 2013: 418-423 - [c56]Randall Wald, Taghi M. Khoshgoftaar, Amri Napolitano:
Comparison of Stability for Different Families of Filter-Based and Wrapper-Based Feature Selection. ICMLA (2) 2013: 457-464 - [c55]Randall Wald, Taghi M. Khoshgoftaar, Amri Napolitano, Chris Sumner:
Which Users Reply to and Interact with Twitter Social Bots? ICTAI 2013: 135-144 - [c54]Randall Wald, Taghi M. Khoshgoftaar, Amri Napolitano:
Stability of Filter- and Wrapper-Based Feature Subset Selection. ICTAI 2013: 374-380 - [c53]Randall Wald, Taghi M. Khoshgoftaar, Amri Napolitano:
How the Choice of Wrapper Learner and Performance Metric Affects Subset Evaluation. ICTAI 2013: 426-432 - [c52]Randall Wald, Taghi M. Khoshgoftaar, Amri Napolitano:
Should the Same Learners Be Used Both within Wrapper Feature Selection and for Building Classification Models? ICTAI 2013: 439-445 - [c51]David J. Dittman, Taghi M. Khoshgoftaar, Randall Wald, Amri Napolitano:
Maximizing Classification Performance for Patient Response Datasets. ICTAI 2013: 454-462 - [c50]Randall Wald, Taghi M. Khoshgoftaar, Amri Napolitano, Chris Sumner:
Predicting susceptibility to social bots on Twitter. IRI 2013: 6-13 - [c49]Randall Wald, Taghi M. Khoshgoftaar, Amri Napolitano:
The importance of performance metrics within wrapper feature selection. IRI 2013: 105-111 - [c48]David J. Dittman, Taghi M. Khoshgoftaar, Randall Wald, Amri Napolitano:
Comparison of rank-based vs. score-based aggregation for ensemble gene selection. IRI 2013: 225-231 - [c47]Taghi M. Khoshgoftaar, Randall Wald, David J. Dittman, Amri Napolitano:
Feature list aggregation approaches for ensemble gene selection on patient response datasets. IRI 2013: 317-324 - [c46]David J. Dittman, Taghi M. Khoshgoftaar, Randall Wald, Amri Napolitano:
Gene selection stability's dependence on dataset difficulty. IRI 2013: 341-348 - [c45]Randall Wald, Taghi M. Khoshgoftaar, Amri Napolitano:
Filter- and wrapper-based feature selection for predicting user interaction with Twitter bots. IRI 2013: 416-423 - [c44]Huanjing Wang, Taghi M. Khoshgoftaar, Randall Wald, Amri Napolitano:
A Study on First Order Statistics-Based Feature Selection Techniques on Software Metric Data. SEKE 2013: 467-472 - [c43]Kehan Gao, Taghi M. Khoshgoftaar, Amri Napolitano:
Exploring Ensemble-Based Data Preprocessing Techniques for Software Quality Estimation. SEKE 2013: 612-617 - 2012
- [j11]Wilker Altidor, Taghi M. Khoshgoftaar, Amri Napolitano:
Measuring stability of feature ranking techniques: a noise-based approach. Int. J. Bus. Intell. Data Min. 7(1/2): 80-115 (2012) - [j10]Huanjing Wang, Taghi M. Khoshgoftaar, Amri Napolitano:
Software measurement data reduction using ensemble techniques. Neurocomputing 92: 124-132 (2012) - [j9]Taghi M. Khoshgoftaar, Kehan Gao, Amri Napolitano:
An Empirical Study of Feature Ranking Techniques for Software Quality Prediction. Int. J. Softw. Eng. Knowl. Eng. 22(2): 161-183 (2012) - [j8]Jason Van Hulse, Taghi M. Khoshgoftaar, Amri Napolitano, Randall Wald:
Threshold-based feature selection techniques for high-dimensional bioinformatics data. Netw. Model. Anal. Health Informatics Bioinform. 1(1-2): 47-61 (2012) - [c42]David J. Dittman, Taghi M. Khoshgoftaar, Randall Wald, Amri Napolitano:
Similarity analysis of feature ranking techniques on imbalanced DNA microarray datasets. BIBM 2012: 1-5 - [c41]David J. Dittman, Taghi M. Khoshgoftaar, Randall Wald, Amri Napolitano:
Determining the Number of Iterations Appropriate for Ensemble Gene Selection on Microarray Data. ICMLA (1) 2012: 82-89 - [c40]David J. Dittman, Taghi M. Khoshgoftaar, Randall Wald, Amri Napolitano:
Comparing Two New Gene Selection Ensemble Approaches with the Commonly-Used Approach. ICMLA (2) 2012: 184-191 - [c39]Janell Duhaney, Taghi M. Khoshgoftaar, Amri Napolitano:
Studying the Effect of Class Imbalance in Ocean Turbine Fault Data on Reliable State Detection. ICMLA (1) 2012: 268-275 - [c38]Kehan Gao, Taghi M. Khoshgoftaar, Amri Napolitano:
A Hybrid Approach to Coping with High Dimensionality and Class Imbalance for Software Defect Prediction. ICMLA (2) 2012: 281-288 - [c37]Huanjing Wang, Taghi M. Khoshgoftaar, Randall Wald, Amri Napolitano:
A Comparative Study on the Stability of Software Metric Selection Techniques. ICMLA (2) 2012: 301-307 - [c36]Huanjing Wang, Taghi M. Khoshgoftaar, Amri Napolitano:
An Empirical Study on the Stability of Feature Selection for Imbalanced Software Engineering Data. ICMLA (1) 2012: 317-323 - [c35]Randall Wald, Taghi M. Khoshgoftaar, Amri Napolitano, Chris Sumner:
Using Twitter Content to Predict Psychopathy. ICMLA (2) 2012: 394-401 - [c34]Jason Van Hulse, Taghi M. Khoshgoftaar, Amri Napolitano:
A Novel Noise-Resistant Boosting Algorithm for Class-Skewed Data. ICMLA (2) 2012: 551-557 - [c33]Huanjing Wang, Taghi M. Khoshgoftaar, Randall Wald, Amri Napolitano:
A novel dataset-similarity-aware approach for evaluating stability of software metric selection techniques. IRI 2012: 1-8 - [c32]Taghi M. Khoshgoftaar, Kehan Gao, Amri Napolitano:
Exploring an iterative feature selection technique for highly imbalanced data sets. IRI 2012: 101-108 - [c31]Wael Awada, Taghi M. Khoshgoftaar, David J. Dittman, Randall Wald, Amri Napolitano:
A review of the stability of feature selection techniques for bioinformatics data. IRI 2012: 356-363 - [c30]Randall Wald, Taghi M. Khoshgoftaar, David J. Dittman, Wael Awada, Amri Napolitano:
An extensive comparison of feature ranking aggregation techniques in bioinformatics. IRI 2012: 377-384 - [c29]Ahmad Abu Shanab, Taghi M. Khoshgoftaar, Randall Wald, Amri Napolitano:
Impact of noise and data sampling on stability of feature ranking techniques for biological datasets. IRI 2012: 415-422 - [c28]Kehan Gao, Taghi M. Khoshgoftaar, Amri Napolitano:
Stability of Filter-Based Feature Selection Methods for Imbalanced Software Measurement Data. SEKE 2012: 74-79 - [c27]Huanjing Wang, Taghi M. Khoshgoftaar, Randall Wald, Amri Napolitano:
An Empirical Study of Software Metric Selection Techniques for Defect Prediction. SEKE 2012: 94-99 - 2011
- [j7]Jason Van Hulse, Taghi M. Khoshgoftaar, Amri Napolitano:
An exploration of learning when data is noisy and imbalanced. Intell. Data Anal. 15(2): 215-236 (2011) - [j6]Jason Van Hulse, Taghi M. Khoshgoftaar, Amri Napolitano:
Evaluating the Impact of Data Quality on Sampling. J. Inf. Knowl. Manag. 10(3): 225-245 (2011) - [j5]Taghi M. Khoshgoftaar, Jason Van Hulse, Amri Napolitano:
Comparing Boosting and Bagging Techniques With Noisy and Imbalanced Data. IEEE Trans. Syst. Man Cybern. Part A 41(3): 552-568 (2011) - [c26]David J. Dittman, Taghi M. Khoshgoftaar, Randall Wald, Amri Napolitano:
Random forest: A reliable tool for patient response prediction. BIBM Workshops 2011: 289-296 - [c25]Kehan Gao, Taghi M. Khoshgoftaar, Amri Napolitano:
Impact of Data Sampling on Stability of Feature Selection for Software Measurement Data. ICTAI 2011: 1004-1011 - [c24]Wilker Altidor, Taghi M. Khoshgoftaar, Amri Napolitano:
A noise-based stability evaluation of threshold-based feature selection techniques. IRI 2011: 240-245 - [c23]Jason Van Hulse, Taghi M. Khoshgoftaar, Amri Napolitano:
A comparative evaluation of feature ranking methods for high dimensional bioinformatics data. IRI 2011: 315-320 - [c22]Xiaoyuan Su, Russell Greiner, Taghi M. Khoshgoftaar, Amri Napolitano:
Using Classifier-Based Nominal Imputation to Improve Machine Learning. PAKDD (1) 2011: 124-135 - [c21]Taghi M. Khoshgoftaar, Kehan Gao, Amri Napolitano:
A Comparative Study of Different Strategies for Predicting Software Quality. SEKE 2011: 65-70 - [c20]Huanjing Wang, Taghi M. Khoshgoftaar, Amri Napolitano:
An Empirical Study of Software Metrics Selection Using Support Vector Machine. SEKE 2011: 83-88 - 2010
- [j4]Jason Van Hulse, Taghi M. Khoshgoftaar, Amri Napolitano:
An Empirical Evaluation of Repetitive Undersampling Techniques. Int. J. Softw. Eng. Knowl. Eng. 20(2): 173-195 (2010) - [j3]Taghi M. Khoshgoftaar, Jason Van Hulse, Amri Napolitano:
Supervised neural network modeling: an empirical investigation into learning from imbalanced data with labeling errors. IEEE Trans. Neural Networks 21(5): 813-830 (2010) - [j2]Chris Seiffert, Taghi M. Khoshgoftaar, Jason Van Hulse, Amri Napolitano:
RUSBoost: A Hybrid Approach to Alleviating Class Imbalance. IEEE Trans. Syst. Man Cybern. Part A 40(1): 185-197 (2010) - [c19]Taghi M. Khoshgoftaar, Kehan Gao, Amri Napolitano:
An Empirical Study of Predictive Modeling Techniques of Software Quality. BIONETICS 2010: 288-302 - [c18]Jason Van Hulse, Taghi M. Khoshgoftaar, Amri Napolitano:
A Novel Noise Filtering Algorithm for Imbalanced Data. ICMLA 2010: 9-14 - [c17]Huanjing Wang, Taghi M. Khoshgoftaar, Amri Napolitano:
A Comparative Study of Ensemble Feature Selection Techniques for Software Defect Prediction. ICMLA 2010: 135-140 - [c16]Jason Van Hulse, Taghi M. Khoshgoftaar, Amri Napolitano:
Evaluating the impact of data quality on sampling. IRI 2010: 31-36
2000 – 2009
- 2009
- [b1]Amri Napolitano:
Classification techniques for noisy and imbalanced data. Florida Atlantic University, Boca Raton, USA, 2009 - [j1]Andres Folleco, Taghi M. Khoshgoftaar, Jason Van Hulse, Amri Napolitano:
Identifying Learners Robust to Low Quality Data. Informatica (Slovenia) 33(3): 245-259 (2009) - [c15]Jason Van Hulse, Taghi M. Khoshgoftaar, Amri Napolitano, Randall Wald:
Feature Selection with High-Dimensional Imbalanced Data. ICDM Workshops 2009: 507-514 - [c14]Wilker Altidor, Taghi M. Khoshgoftaar, Amri Napolitano:
Wrapper-Based Feature Ranking for Software Engineering Metrics. ICMLA 2009: 241-246 - [c13]Kehan Gao, Taghi M. Khoshgoftaar, Amri Napolitano:
Exploring Software Quality Classification with a Wrapper-Based Feature Ranking Technique. ICTAI 2009: 67-74 - [c12]Jason Van Hulse, Taghi M. Khoshgoftaar, Amri Napolitano:
An Empirical Comparison of Repetitive Undersampling Techniques. IRI 2009: 29-34 - 2008
- [c11]Chris Seiffert, Taghi M. Khoshgoftaar, Jason Van Hulse, Amri Napolitano:
Building Useful Models from Imbalanced Data with Sampling and Boosting. FLAIRS 2008: 306-311 - [c10]Chris Seiffert, Taghi M. Khoshgoftaar, Jason Van Hulse, Amri Napolitano:
A Comparative Study of Data Sampling and Cost Sensitive Learning. ICDM Workshops 2008: 46-52 - [c9]Andres Folleco, Taghi M. Khoshgoftaar, Amri Napolitano:
Comparison of Four Performance Metrics for Evaluating Sampling Techniques for Low Quality Class-Imbalanced Data. ICMLA 2008: 153-158 - [c8]Chris Seiffert, Taghi M. Khoshgoftaar, Jason Van Hulse, Amri Napolitano:
RUSBoost: Improving classification performance when training data is skewed. ICPR 2008: 1-4 - [c7]Chris Seiffert, Taghi M. Khoshgoftaar, Jason Van Hulse, Amri Napolitano:
Resampling or Reweighting: A Comparison of Boosting Implementations. ICTAI (1) 2008: 445-451 - [c6]Chris Seiffert, Taghi M. Khoshgoftaar, Jason Van Hulse, Amri Napolitano:
Improving Learner Performance with Data Sampling and Boosting. ICTAI (1) 2008: 452-459 - 2007
- [c5]Jason Van Hulse, Taghi M. Khoshgoftaar, Amri Napolitano:
Skewed Class Distributions and Mislabeled Examples. ICDM Workshops 2007: 477-482 - [c4]Jason Van Hulse, Taghi M. Khoshgoftaar, Amri Napolitano:
Experimental perspectives on learning from imbalanced data. ICML 2007: 935-942 - [c3]Taghi M. Khoshgoftaar, Chris Seiffert, Jason Van Hulse, Amri Napolitano, Andres Folleco:
Learning with limited minority class data. ICMLA 2007: 348-353 - [c2]Chris Seiffert, Taghi M. Khoshgoftaar, Jason Van Hulse, Amri Napolitano:
Mining Data with Rare Events: A Case Study. ICTAI (2) 2007: 132-139
1980 – 1989
- 1982
- [c1]G. Cosmai, Umberto Cugini, Piero Mussio, Amri Napolitano:
An interactive drafting system based on two dimensional primitives. DAC 1982: 521-529
Coauthor Index
manage site settings
To protect your privacy, all features that rely on external API calls from your browser are turned off by default. You need to opt-in for them to become active. All settings here will be stored as cookies with your web browser. For more information see our F.A.Q.
Unpaywalled article links
Add open access links from to the list of external document links (if available).
Privacy notice: By enabling the option above, your browser will contact the API of unpaywall.org to load hyperlinks to open access articles. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Unpaywall privacy policy.
Archived links via Wayback Machine
For web page which are no longer available, try to retrieve content from the of the Internet Archive (if available).
Privacy notice: By enabling the option above, your browser will contact the API of archive.org to check for archived content of web pages that are no longer available. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Internet Archive privacy policy.
Reference lists
Add a list of references from , , and to record detail pages.
load references from crossref.org and opencitations.net
Privacy notice: By enabling the option above, your browser will contact the APIs of crossref.org, opencitations.net, and semanticscholar.org to load article reference information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Crossref privacy policy and the OpenCitations privacy policy, as well as the AI2 Privacy Policy covering Semantic Scholar.
Citation data
Add a list of citing articles from and to record detail pages.
load citations from opencitations.net
Privacy notice: By enabling the option above, your browser will contact the API of opencitations.net and semanticscholar.org to load citation information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the OpenCitations privacy policy as well as the AI2 Privacy Policy covering Semantic Scholar.
OpenAlex data
Load additional information about publications from .
Privacy notice: By enabling the option above, your browser will contact the API of openalex.org to load additional information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the information given by OpenAlex.
last updated on 2024-04-24 23:12 CEST by the dblp team
all metadata released as open data under CC0 1.0 license
see also: Terms of Use | Privacy Policy | Imprint