default search action
Dinghuai Zhang
Person information
Refine list
refinements active!
zoomed in on ?? of ?? records
view refined list in
export refined list as
2020 – today
- 2024
- [j1]Dinghuai Zhang, Ling Pan, Ricky T. Q. Chen, Aaron C. Courville, Yoshua Bengio:
Distributional GFlowNets with Quantile Flows. Trans. Mach. Learn. Res. 2024 (2024) - [c28]Zhengqi Gao, Dinghuai Zhang, Luca Daniel, Duane S. Boning:
NOFIS: Normalizing Flow for Rare Circuit Failure Analysis. DAC 2024: 279:1-279:6 - [c27]Jean-Pierre R. Falet, Hae Beom Lee, Nikolay Malkin, Chen Sun, Dragos Secrieru, Dinghuai Zhang, Guillaume Lajoie, Yoshua Bengio:
Delta-AI: Local objectives for amortized inference in sparse graphical models. ICLR 2024 - [c26]Minsu Kim, Taeyoung Yun, Emmanuel Bengio, Dinghuai Zhang, Yoshua Bengio, Sungsoo Ahn, Jinkyoo Park:
Local Search GFlowNets. ICLR 2024 - [c25]Dinghuai Zhang, Ricky T. Q. Chen, Cheng-Hao Liu, Aaron C. Courville, Yoshua Bengio:
Diffusion Generative Flow Samplers: Improving learning signals through partial trajectory optimization. ICLR 2024 - [c24]Ming-Yang Zhou, Zichao Yan, Elliot Layne, Nikolay Malkin, Dinghuai Zhang, Moksh Jain, Mathieu Blanchette, Yoshua Bengio:
PhyloGFN: Phylogenetic inference with generative flow networks. ICLR 2024 - [c23]Minsu Kim, Joohwan Ko, Taeyoung Yun, Dinghuai Zhang, Ling Pan, Woochang Kim, Jinkyoo Park, Emmanuel Bengio, Yoshua Bengio:
Learning to Scale Logits for Temperature-Conditional GFlowNets. ICML 2024 - [i34]Peiyu Yu, Dinghuai Zhang, Hengzhi He, Xiaojian Ma, Ruiyao Miao, Yifan Lu, Yasi Zhang, Deqian Kong, Ruiqi Gao, Jianwen Xie, Guang Cheng, Ying Nian Wu:
Latent Energy-Based Odyssey: Black-Box Optimization via Expanded Exploration in the Energy-Based Latent Space. CoRR abs/2405.16730 (2024) - [i33]Dinghuai Zhang, Yizhe Zhang, Jiatao Gu, Ruixiang Zhang, Josh M. Susskind, Navdeep Jaitly, Shuangfei Zhai:
Improving GFlowNets for Text-to-Image Diffusion Alignment. CoRR abs/2406.00633 (2024) - [i32]George Ma, Emmanuel Bengio, Yoshua Bengio, Dinghuai Zhang:
Baking Symmetry into GFlowNets. CoRR abs/2406.05426 (2024) - [i31]Chenqing Hua, Yong Liu, Dinghuai Zhang, Odin Zhang, Sitao Luan, Kevin K. Yang, Guy Wolf, Doina Precup, Shuangjia Zheng:
EnzymeFlow: Generating Reaction-specific Enzyme Catalytic Pockets through Flow Matching and Co-Evolutionary Dynamics. CoRR abs/2410.00327 (2024) - [i30]Jiatao Gu, Yuyang Wang, Yizhe Zhang, Qihang Zhang, Dinghuai Zhang, Navdeep Jaitly, Josh M. Susskind, Shuangfei Zhai:
DART: Denoising Autoregressive Transformer for Scalable Text-to-Image Generation. CoRR abs/2410.08159 (2024) - [i29]Eric Hanchen Jiang, Zhi Zhang, Dinghuai Zhang, Andrew Lizarraga, Chenheng Xu, Yasi Zhang, Siyan Zhao, Zhengjie Xu, Peiyu Yu, Yuer Tang, Deqian Kong, Ying Nian Wu:
DODT: Enhanced Online Decision Transformer Learning through Dreamer's Actor-Critic Trajectory Forecasting. CoRR abs/2410.11359 (2024) - 2023
- [c22]Zhijian Duan, Wenhan Huang, Dinghuai Zhang, Yali Du, Jun Wang, Yaodong Yang, Xiaotie Deng:
Is Nash Equilibrium Approximator Learnable? AAMAS 2023: 233-241 - [c21]Yimu Wang, Dinghuai Zhang, Yihan Wu, Heng Huang, Hongyang Zhang:
Cooperation or Competition: Avoiding Player Domination for Multi-Target Robustness via Adaptive Budgets. CVPR 2023: 20564-20574 - [c20]Nikolay Malkin, Salem Lahlou, Tristan Deleu, Xu Ji, Edward J. Hu, Katie Everett, Dinghuai Zhang, Yoshua Bengio:
GFlowNets and variational inference. ICLR 2023 - [c19]Ling Pan, Dinghuai Zhang, Aaron C. Courville, Longbo Huang, Yoshua Bengio:
Generative Augmented Flow Networks. ICLR 2023 - [c18]Jiaye Teng, Chuan Wen, Dinghuai Zhang, Yoshua Bengio, Yang Gao, Yang Yuan:
Predictive Inference with Feature Conformal Prediction. ICLR 2023 - [c17]Dinghuai Zhang, Aaron C. Courville, Yoshua Bengio, Qinqing Zheng, Amy Zhang, Ricky T. Q. Chen:
Latent State Marginalization as a Low-cost Approach for Improving Exploration. ICLR 2023 - [c16]Salem Lahlou, Tristan Deleu, Pablo Lemos, Dinghuai Zhang, Alexandra Volokhova, Alex Hernández-García, Léna Néhale Ezzine, Yoshua Bengio, Nikolay Malkin:
A theory of continuous generative flow networks. ICML 2023: 18269-18300 - [c15]Dianbo Liu, Moksh Jain, Bonaventure F. P. Dossou, Qianli Shen, Salem Lahlou, Anirudh Goyal, Nikolay Malkin, Chris Chinenye Emezue, Dinghuai Zhang, Nadhir Hassen, Xu Ji, Kenji Kawaguchi, Yoshua Bengio:
GFlowOut: Dropout with Generative Flow Networks. ICML 2023: 21715-21729 - [c14]Ling Pan, Nikolay Malkin, Dinghuai Zhang, Yoshua Bengio:
Better Training of GFlowNets with Local Credit and Incomplete Trajectories. ICML 2023: 26878-26890 - [c13]Dinghuai Zhang, Hanjun Dai, Nikolay Malkin, Aaron C. Courville, Yoshua Bengio, Ling Pan:
Let the Flows Tell: Solving Graph Combinatorial Problems with GFlowNets. NeurIPS 2023 - [c12]Ling Pan, Dinghuai Zhang, Moksh Jain, Longbo Huang, Yoshua Bengio:
Stochastic Generative Flow Networks. UAI 2023: 1628-1638 - [i28]Salem Lahlou, Tristan Deleu, Pablo Lemos, Dinghuai Zhang, Alexandra Volokhova, Alex Hernández-García, Léna Néhale Ezzine, Yoshua Bengio, Nikolay Malkin:
A theory of continuous generative flow networks. CoRR abs/2301.12594 (2023) - [i27]Ling Pan, Nikolay Malkin, Dinghuai Zhang, Yoshua Bengio:
Better Training of GFlowNets with Local Credit and Incomplete Trajectories. CoRR abs/2302.01687 (2023) - [i26]Dinghuai Zhang, Ling Pan, Ricky T. Q. Chen, Aaron C. Courville, Yoshua Bengio:
Distributional GFlowNets with Quantile Flows. CoRR abs/2302.05793 (2023) - [i25]Ling Pan, Dinghuai Zhang, Moksh Jain, Longbo Huang, Yoshua Bengio:
Stochastic Generative Flow Networks. CoRR abs/2302.09465 (2023) - [i24]Dinghuai Zhang, Hanjun Dai, Nikolay Malkin, Aaron C. Courville, Yoshua Bengio, Ling Pan:
Let the Flows Tell: Solving Graph Combinatorial Optimization Problems with GFlowNets. CoRR abs/2305.17010 (2023) - [i23]Yimu Wang, Dinghuai Zhang, Yihan Wu, Heng Huang, Hongyang Zhang:
Cooperation or Competition: Avoiding Player Domination for Multi-Target Robustness via Adaptive Budgets. CoRR abs/2306.15482 (2023) - [i22]Jean-Pierre R. Falet, Hae Beom Lee, Nikolay Malkin, Chen Sun, Dragos Secrieru, Dinghuai Zhang, Guillaume Lajoie, Yoshua Bengio:
Delta-AI: Local objectives for amortized inference in sparse graphical models. CoRR abs/2310.02423 (2023) - [i21]Dinghuai Zhang, Ricky Tian Qi Chen, Cheng-Hao Liu, Aaron C. Courville, Yoshua Bengio:
Diffusion Generative Flow Samplers: Improving learning signals through partial trajectory optimization. CoRR abs/2310.02679 (2023) - [i20]Minsu Kim, Taeyoung Yun, Emmanuel Bengio, Dinghuai Zhang, Yoshua Bengio, Sungsoo Ahn, Jinkyoo Park:
Local Search GFlowNets. CoRR abs/2310.02710 (2023) - [i19]Minsu Kim, Joohwan Ko, Dinghuai Zhang, Ling Pan, Taeyoung Yun, Woochang Kim, Jinkyoo Park, Yoshua Bengio:
Learning to Scale Logits for Temperature-Conditional GFlowNets. CoRR abs/2310.02823 (2023) - [i18]Mingyang Zhou, Zichao Yan, Elliot Layne, Nikolay Malkin, Dinghuai Zhang, Moksh Jain, Mathieu Blanchette, Yoshua Bengio:
PhyloGFN: Phylogenetic inference with generative flow networks. CoRR abs/2310.08774 (2023) - [i17]Zhengqi Gao, Dinghuai Zhang, Luca Daniel, Duane S. Boning:
Rare Event Probability Learning by Normalizing Flows. CoRR abs/2310.19167 (2023) - 2022
- [c11]Dinghuai Zhang, Jie Fu, Yoshua Bengio, Aaron C. Courville:
Unifying Likelihood-free Inference with Black-box Optimization and Beyond. ICLR 2022 - [c10]Moksh Jain, Emmanuel Bengio, Alex Hernández-García, Jarrid Rector-Brooks, Bonaventure F. P. Dossou, Chanakya Ajit Ekbote, Jie Fu, Tianyu Zhang, Michael Kilgour, Dinghuai Zhang, Lena Simine, Payel Das, Yoshua Bengio:
Biological Sequence Design with GFlowNets. ICML 2022: 9786-9801 - [c9]Dinghuai Zhang, Nikolay Malkin, Zhen Liu, Alexandra Volokhova, Aaron C. Courville, Yoshua Bengio:
Generative Flow Networks for Discrete Probabilistic Modeling. ICML 2022: 26412-26428 - [c8]Dinghuai Zhang, Hongyang Zhang, Aaron C. Courville, Yoshua Bengio, Pradeep Ravikumar, Arun Sai Suggala:
Building Robust Ensembles via Margin Boosting. ICML 2022: 26669-26692 - [i16]Dinghuai Zhang, Nikolay Malkin, Zhen Liu, Alexandra Volokhova, Aaron C. Courville, Yoshua Bengio:
Generative Flow Networks for Discrete Probabilistic Modeling. CoRR abs/2202.01361 (2022) - [i15]Moksh Jain, Emmanuel Bengio, Alex Hernández-García, Jarrid Rector-Brooks, Bonaventure F. P. Dossou, Chanakya Ekbote, Jie Fu, Tianyu Zhang, Michael Kilgour, Dinghuai Zhang, Lena Simine, Payel Das, Yoshua Bengio:
Biological Sequence Design with GFlowNets. CoRR abs/2203.04115 (2022) - [i14]Dinghuai Zhang, Hongyang Zhang, Aaron C. Courville, Yoshua Bengio, Pradeep Ravikumar, Arun Sai Suggala:
Building Robust Ensembles via Margin Boosting. CoRR abs/2206.03362 (2022) - [i13]Dinghuai Zhang, Ricky T. Q. Chen, Nikolay Malkin, Yoshua Bengio:
Unifying Generative Models with GFlowNets. CoRR abs/2209.02606 (2022) - [i12]Jiaye Teng, Chuan Wen, Dinghuai Zhang, Yoshua Bengio, Yang Gao, Yang Yuan:
Predictive Inference with Feature Conformal Prediction. CoRR abs/2210.00173 (2022) - [i11]Nikolay Malkin, Salem Lahlou, Tristan Deleu, Xu Ji, Edward J. Hu, Katie Everett, Dinghuai Zhang, Yoshua Bengio:
GFlowNets and variational inference. CoRR abs/2210.00580 (2022) - [i10]Dinghuai Zhang, Aaron C. Courville, Yoshua Bengio, Qinqing Zheng, Amy Zhang, Ricky T. Q. Chen:
Latent State Marginalization as a Low-cost Approach for Improving Exploration. CoRR abs/2210.00999 (2022) - [i9]Ling Pan, Dinghuai Zhang, Aaron C. Courville, Longbo Huang, Yoshua Bengio:
Generative Augmented Flow Networks. CoRR abs/2210.03308 (2022) - [i8]Dianbo Liu, Moksh Jain, Bonaventure Dossou, Qianli Shen, Salem Lahlou, Anirudh Goyal, Nikolay Malkin, Chris Emezue, Dinghuai Zhang, Nadhir Hassen, Xu Ji, Kenji Kawaguchi, Yoshua Bengio:
GFlowOut: Dropout with Generative Flow Networks. CoRR abs/2210.12928 (2022) - 2021
- [c7]Yanzhi Chen, Dinghuai Zhang, Michael U. Gutmann, Aaron C. Courville, Zhanxing Zhu:
Neural Approximate Sufficient Statistics for Implicit Models. ICLR 2021 - [c6]David Krueger, Ethan Caballero, Jörn-Henrik Jacobsen, Amy Zhang, Jonathan Binas, Dinghuai Zhang, Rémi Le Priol, Aaron C. Courville:
Out-of-Distribution Generalization via Risk Extrapolation (REx). ICML 2021: 5815-5826 - [c5]Dinghuai Zhang, Kartik Ahuja, Yilun Xu, Yisen Wang, Aaron C. Courville:
Can Subnetwork Structure Be the Key to Out-of-Distribution Generalization? ICML 2021: 12356-12367 - [c4]Kartik Ahuja, Ethan Caballero, Dinghuai Zhang, Jean-Christophe Gagnon-Audet, Yoshua Bengio, Ioannis Mitliagkas, Irina Rish:
Invariance Principle Meets Information Bottleneck for Out-of-Distribution Generalization. NeurIPS 2021: 3438-3450 - [i7]Dinghuai Zhang, Kartik Ahuja, Yilun Xu, Yisen Wang, Aaron C. Courville:
Can Subnetwork Structure be the Key to Out-of-Distribution Generalization? CoRR abs/2106.02890 (2021) - [i6]Kartik Ahuja, Ethan Caballero, Dinghuai Zhang, Yoshua Bengio, Ioannis Mitliagkas, Irina Rish:
Invariance Principle Meets Information Bottleneck for Out-of-Distribution Generalization. CoRR abs/2106.06607 (2021) - [i5]Dinghuai Zhang, Jie Fu, Yoshua Bengio, Aaron C. Courville:
Unifying Likelihood-free Inference with Black-box Sequence Design and Beyond. CoRR abs/2110.03372 (2021) - 2020
- [c3]Baifeng Shi, Dinghuai Zhang, Qi Dai, Zhanxing Zhu, Yadong Mu, Jingdong Wang:
Informative Dropout for Robust Representation Learning: A Shape-bias Perspective. ICML 2020: 8828-8839 - [c2]Dinghuai Zhang, Mao Ye, Chengyue Gong, Zhanxing Zhu, Qiang Liu:
Black-Box Certification with Randomized Smoothing: A Functional Optimization Based Framework. NeurIPS 2020 - [i4]Dinghuai Zhang, Mao Ye, Chengyue Gong, Zhanxing Zhu, Qiang Liu:
Black-Box Certification with Randomized Smoothing: A Functional Optimization Based Framework. CoRR abs/2002.09169 (2020) - [i3]Baifeng Shi, Dinghuai Zhang, Qi Dai, Zhanxing Zhu, Yadong Mu, Jingdong Wang:
Informative Dropout for Robust Representation Learning: A Shape-bias Perspective. CoRR abs/2008.04254 (2020) - [i2]Yanzhi Chen, Dinghuai Zhang, Michael U. Gutmann, Aaron C. Courville, Zhanxing Zhu:
Neural Approximate Sufficient Statistics for Implicit Models. CoRR abs/2010.10079 (2020)
2010 – 2019
- 2019
- [c1]Dinghuai Zhang, Tianyuan Zhang, Yiping Lu, Zhanxing Zhu, Bin Dong:
You Only Propagate Once: Accelerating Adversarial Training via Maximal Principle. NeurIPS 2019: 227-238 - [i1]Dinghuai Zhang, Tianyuan Zhang, Yiping Lu, Zhanxing Zhu, Bin Dong:
You Only Propagate Once: Accelerating Adversarial Training via Maximal Principle. CoRR abs/1905.00877 (2019)
Coauthor Index
manage site settings
To protect your privacy, all features that rely on external API calls from your browser are turned off by default. You need to opt-in for them to become active. All settings here will be stored as cookies with your web browser. For more information see our F.A.Q.
Unpaywalled article links
Add open access links from to the list of external document links (if available).
Privacy notice: By enabling the option above, your browser will contact the API of unpaywall.org to load hyperlinks to open access articles. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Unpaywall privacy policy.
Archived links via Wayback Machine
For web page which are no longer available, try to retrieve content from the of the Internet Archive (if available).
Privacy notice: By enabling the option above, your browser will contact the API of archive.org to check for archived content of web pages that are no longer available. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Internet Archive privacy policy.
Reference lists
Add a list of references from , , and to record detail pages.
load references from crossref.org and opencitations.net
Privacy notice: By enabling the option above, your browser will contact the APIs of crossref.org, opencitations.net, and semanticscholar.org to load article reference information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Crossref privacy policy and the OpenCitations privacy policy, as well as the AI2 Privacy Policy covering Semantic Scholar.
Citation data
Add a list of citing articles from and to record detail pages.
load citations from opencitations.net
Privacy notice: By enabling the option above, your browser will contact the API of opencitations.net and semanticscholar.org to load citation information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the OpenCitations privacy policy as well as the AI2 Privacy Policy covering Semantic Scholar.
OpenAlex data
Load additional information about publications from .
Privacy notice: By enabling the option above, your browser will contact the API of openalex.org to load additional information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the information given by OpenAlex.
last updated on 2024-12-02 22:27 CET by the dblp team
all metadata released as open data under CC0 1.0 license
see also: Terms of Use | Privacy Policy | Imprint