Остановите войну!
for scientists:
default search action
Erik B. Sudderth
Person information
- affiliation: University of California, Irvine, CA, USA
- affiliation (former): Brown University, Providence, RI, USA
Refine list
refinements active!
zoomed in on ?? of ?? records
view refined list in
export refined list as
2020 – today
- 2024
- [i13]Ali Younis, Erik B. Sudderth:
Differentiable and Stable Long-Range Tracking of Multiple Posterior Modes. CoRR abs/2404.08789 (2024) - [i12]Federica Zoe Ricci, Erik B. Sudderth, Jaylen Lee, Megan A. K. Peters, Marina Vannucci, Michele Guindani:
Bayesian temporal biclustering with applications to multi-subject neuroscience studies. CoRR abs/2406.17131 (2024) - 2023
- [c59]Henry C. Bendekgey, Gabe Hope, Erik B. Sudderth:
Unbiased learning of deep generative models with structured discrete representations. NeurIPS 2023 - [c58]Ali Younis, Erik B. Sudderth:
Differentiable and Stable Long-Range Tracking of Multiple Posterior Modes. NeurIPS 2023 - [c57]Sakshi Agarwal, Gabriel Hope, Ali Younis, Erik B. Sudderth:
A decoder suffices for query-adaptive variational inference. UAI 2023: 33-44 - [i11]Harry Bendekgey, Gabriel Hope, Erik B. Sudderth:
Unbiased Learning of Deep Generative Models with Structured Discrete Representations. CoRR abs/2306.08230 (2023) - 2022
- [c56]Federica Zoe Ricci, Michele Guindani, Erik B. Sudderth:
Thinned random measures for sparse graphs with overlapping communities. NeurIPS 2022 - 2021
- [c55]Geng Ji, Debora Sujono, Erik B. Sudderth:
Marginalized Stochastic Natural Gradients for Black-Box Variational Inference. ICML 2021: 4870-4881 - [c54]Harry Bendekgey, Erik B. Sudderth:
Scalable and Stable Surrogates for Flexible Classifiers with Fairness Constraints. NeurIPS 2021: 30023-30036 - 2020
- [j12]Zhile Ren, Erik B. Sudderth:
Clouds of Oriented Gradients for 3D Detection of Objects, Surfaces, and Indoor Scene Layouts. IEEE Trans. Pattern Anal. Mach. Intell. 42(10): 2670-2683 (2020) - [i10]Gabriel Hope, Madina Abdrakhmanova, Xiaoyin Chen, Michael C. Hughes, Erik B. Sudderth:
Learning Consistent Deep Generative Models from Sparse Data via Prediction Constraints. CoRR abs/2012.06718 (2020)
2010 – 2019
- 2019
- [c53]Daeyun Shin, Zhile Ren, Erik B. Sudderth, Charless C. Fowlkes:
Multi-layer Depth and Epipolar Feature Transformers for 3D Scene Reconstruction. CVPR Workshops 2019: 39-43 - [c52]Daeyun Shin, Zhile Ren, Erik B. Sudderth, Charless C. Fowlkes:
3D Scene Reconstruction With Multi-Layer Depth and Epipolar Transformers. ICCV 2019: 2172-2182 - [c51]Geng Ji, Dehua Cheng, Huazhong Ning, Changhe Yuan, Hanning Zhou, Liang Xiong, Erik B. Sudderth:
Variational Training for Large-Scale Noisy-OR Bayesian Networks. UAI 2019: 873-882 - [c50]Zhile Ren, Orazio Gallo, Deqing Sun, Ming-Hsuan Yang, Erik B. Sudderth, Jan Kautz:
A Fusion Approach for Multi-Frame Optical Flow Estimation. WACV 2019: 2077-2086 - [i9]Daeyun Shin, Zhile Ren, Erik B. Sudderth, Charless C. Fowlkes:
Multi-layer Depth and Epipolar Feature Transformers for 3D Scene Reconstruction. CoRR abs/1902.06729 (2019) - [i8]Zhile Ren, Erik B. Sudderth:
Clouds of Oriented Gradients for 3D Detection of Objects, Surfaces, and Indoor Scene Layouts. CoRR abs/1906.04725 (2019) - 2018
- [c49]Michael C. Hughes, Gabriel Hope, Leah Weiner, Thomas H. McCoy Jr., Roy H. Perlis, Erik B. Sudderth, Finale Doshi-Velez:
Semi-Supervised Prediction-Constrained Topic Models. AISTATS 2018: 1067-1076 - [c48]Zhile Ren, Erik B. Sudderth:
3D Object Detection With Latent Support Surfaces. CVPR 2018: 937-946 - [c47]Zhile Ren, Orazio Gallo, Deqing Sun, Ming-Hsuan Yang, Erik B. Sudderth, Jan Kautz:
A Simple and Effective Fusion Approach for Multi-frame Optical Flow Estimation. ECCV Workshops (6) 2018: 706-710 - [i7]Zhile Ren, Orazio Gallo, Deqing Sun, Ming-Hsuan Yang, Erik B. Sudderth, Jan Kautz:
A Fusion Approach for Multi-Frame Optical Flow Estimation. CoRR abs/1810.10066 (2018) - 2017
- [j11]Dae Il Kim, Benjamin F. Swanson, Michael C. Hughes, Erik B. Sudderth:
Refinery: An Open Source Topic Modeling Web Platform. J. Mach. Learn. Res. 18: 12:1-12:5 (2017) - [c46]Zhile Ren, Deqing Sun, Jan Kautz, Erik B. Sudderth:
Cascaded Scene Flow Prediction Using Semantic Segmentation. 3DV 2017: 225-233 - [c45]Geng Ji, Michael C. Hughes, Erik B. Sudderth:
From Patches to Images: A Nonparametric Generative Model. ICML 2017: 1675-1683 - [c44]Daniel Milstein, Jason Pacheco, Leigh J. Hochberg, John D. Simeral, Beata Jarosiewicz, Erik B. Sudderth:
Multiscale Semi-Markov Dynamics for Intracortical Brain-Computer Interfaces. NIPS 2017: 868-878 - [i6]Michael C. Hughes, Leah Weiner, Gabriel Hope, Thomas H. McCoy Jr., Roy H. Perlis, Erik B. Sudderth, Finale Doshi-Velez:
Prediction-Constrained Training for Semi-Supervised Mixture and Topic Models. CoRR abs/1707.07341 (2017) - [i5]Zhile Ren, Deqing Sun, Jan Kautz, Erik B. Sudderth:
Cascaded Scene Flow Prediction using Semantic Segmentation. CoRR abs/1707.08313 (2017) - [i4]Geng Ji, Robert Bamler, Erik B. Sudderth, Stephan Mandt:
Bayesian Paragraph Vectors. CoRR abs/1711.03946 (2017) - [i3]Michael C. Hughes, Gabriel Hope, Leah Weiner, Thomas H. McCoy Jr., Roy H. Perlis, Erik B. Sudderth, Finale Doshi-Velez:
Prediction-Constrained Topic Models for Antidepressant Recommendation. CoRR abs/1712.00499 (2017) - 2016
- [c43]Zhile Ren, Erik B. Sudderth:
Three-Dimensional Object Detection and Layout Prediction Using Clouds of Oriented Gradients. CVPR 2016: 1525-1533 - [i2]Michael C. Hughes, Erik B. Sudderth:
Fast Learning of Clusters and Topics via Sparse Posteriors. CoRR abs/1609.07521 (2016) - 2015
- [j10]Ryan P. Adams, Emily B. Fox, Erik B. Sudderth, Yee Whye Teh:
Guest Editors' Introduction to the Special Issue on Bayesian Nonparametrics. IEEE Trans. Pattern Anal. Mach. Intell. 37(2): 209-211 (2015) - [c42]Michael C. Hughes, Dae Il Kim, Erik B. Sudderth:
Reliable and Scalable Variational Inference for the Hierarchical Dirichlet Process. AISTATS 2015 - [c41]Deqing Sun, Erik B. Sudderth, Hanspeter Pfister:
Layered RGBD scene flow estimation. CVPR 2015: 548-556 - [c40]Jason Pacheco, Erik B. Sudderth:
Proteins, Particles, and Pseudo-Max-Marginals: A Submodular Approach. ICML 2015: 2200-2208 - [c39]Michael C. Hughes, William T. Stephenson, Erik B. Sudderth:
Scalable Adaptation of State Complexity for Nonparametric Hidden Markov Models. NIPS 2015: 1198-1206 - 2014
- [c38]Jason Pacheco, Silvia Zuffi, Michael J. Black, Erik B. Sudderth:
Preserving Modes and Messages via Diverse Particle Selection. ICML 2014: 1152-1160 - [c37]Soumya Ghosh, Michalis Raptis, Leonid Sigal, Erik B. Sudderth:
Nonparametric Clustering with Distance Dependent Hierarchies. UAI 2014: 260-269 - 2013
- [c36]Deqing Sun, Jonas Wulff, Erik B. Sudderth, Hanspeter Pfister, Michael J. Black:
A Fully-Connected Layered Model of Foreground and Background Flow. CVPR 2013: 2451-2458 - [c35]Dae Il Kim, Prem Gopalan, David M. Blei, Erik B. Sudderth:
Efficient Online Inference for Bayesian Nonparametric Relational Models. NIPS 2013: 962-970 - [c34]Michael C. Hughes, Erik B. Sudderth:
Memoized Online Variational Inference for Dirichlet Process Mixture Models. NIPS 2013: 1133-1141 - 2012
- [c33]Michael C. Hughes, Erik B. Sudderth:
Nonparametric discovery of activity patterns from video collections. CVPR Workshops 2012: 25-32 - [c32]Deqing Sun, Erik B. Sudderth, Michael J. Black:
Layered segmentation and optical flow estimation over time. CVPR 2012: 1768-1775 - [c31]Soumya Ghosh, Erik B. Sudderth:
Nonparametric learning for layered segmentation of natural images. CVPR 2012: 2272-2279 - [c30]Dae Il Kim, Michael C. Hughes, Erik B. Sudderth:
The Nonparametric Metadata Dependent Relational Model. ICML 2012 - [c29]Michael C. Hughes, Emily B. Fox, Erik B. Sudderth:
Effective Split-Merge Monte Carlo Methods for Nonparametric Models of Sequential Data. NIPS 2012: 1304-1312 - [c28]Soumya Ghosh, Erik B. Sudderth, Matthew Loper, Michael J. Black:
From Deformations to Parts: Motion-based Segmentation of 3D Objects. NIPS 2012: 2006-2014 - [c27]Jason L. Pacheco, Erik B. Sudderth:
Minimization of Continuous Bethe Approximations: A Positive Variation. NIPS 2012: 2573-2581 - [c26]Michael Bryant, Erik B. Sudderth:
Truly Nonparametric Online Variational Inference for Hierarchical Dirichlet Processes. NIPS 2012: 2708-2716 - [c25]Jason L. Pacheco, Erik B. Sudderth:
Improved variational inference for tracking in clutter. SSP 2012: 852-855 - [i1]Nimar S. Arora, Rodrigo de Salvo Braz, Erik B. Sudderth, Stuart Russell:
Gibbs Sampling in Open-Universe Stochastic Languages. CoRR abs/1203.3464 (2012) - 2011
- [j9]Emily B. Fox, Erik B. Sudderth, Michael I. Jordan, Alan S. Willsky:
Bayesian Nonparametric Inference of Switching Dynamic Linear Models. IEEE Trans. Signal Process. 59(4): 1569-1585 (2011) - [c24]Nimar S. Arora, Stuart Russell, Paul Kidwell, Erik B. Sudderth:
Global Seismic Monitoring: A Bayesian Approach. AAAI 2011: 1533-1536 - [c23]Soumya Ghosh, Andrei B. Ungureanu, Erik B. Sudderth, David M. Blei:
Spatial distance dependent Chinese restaurant processes for image segmentation. NIPS 2011: 1476-1484 - [c22]Dae Il Kim, Erik B. Sudderth:
The Doubly Correlated Nonparametric Topic Model. NIPS 2011: 1980-1988 - 2010
- [j8]Erik B. Sudderth, Alexander T. Ihler, Michael Isard, William T. Freeman, Alan S. Willsky:
Nonparametric belief propagation. Commun. ACM 53(10): 95-103 (2010) - [j7]Emily B. Fox, Erik B. Sudderth, Michael I. Jordan, Alan S. Willsky:
Bayesian Nonparametric Methods for Learning Markov Switching Processes. IEEE Signal Process. Mag. 27(6): 43-54 (2010) - [c21]Nimar S. Arora, Stuart Russell, Erik B. Sudderth:
Automatic Inference in BLOG. StarAI@AAAI 2010 - [c20]Nimar S. Arora, Stuart Russell, Paul Kidwell, Erik B. Sudderth:
Global seismic monitoring as probabilistic inference. NIPS 2010: 73-81 - [c19]Deqing Sun, Erik B. Sudderth, Michael J. Black:
Layered image motion with explicit occlusions, temporal consistency, and depth ordering. NIPS 2010: 2226-2234 - [c18]Nimar S. Arora, Rodrigo de Salvo Braz, Erik B. Sudderth, Stuart Russell:
Gibbs Sampling in Open-Universe Stochastic Languages. UAI 2010: 30-39
2000 – 2009
- 2009
- [j6]Qiang Ji, Jiebo Luo, Dimitris N. Metaxas, Antonio Torralba, Thomas S. Huang, Erik B. Sudderth:
Guest Editors' Introduction to the Special Section on Probabilistic Graphical Models. IEEE Trans. Pattern Anal. Mach. Intell. 31(10): 1729-1732 (2009) - [c17]Jeremy Schiff, Erik B. Sudderth, Kenneth Y. Goldberg:
Nonparametric belief propagation for distributed tracking of robot networks with noisy inter-distance measurements. IROS 2009: 1369-1376 - [c16]Emily B. Fox, Erik B. Sudderth, Michael I. Jordan, Alan S. Willsky:
Sharing Features among Dynamical Systems with Beta Processes. NIPS 2009: 549-557 - 2008
- [j5]James A. Hendler, Philipp Cimiano, Dmitri A. Dolgov, Anat Levin, Peter Mika, Brian Milch, Louis-Philippe Morency, Boris Motik, Jennifer Neville, Erik B. Sudderth, Luis von Ahn:
AI's 10 to Watch. IEEE Intell. Syst. 23(3): 9-19 (2008) - [j4]Erik B. Sudderth, Antonio Torralba, William T. Freeman, Alan S. Willsky:
Describing Visual Scenes Using Transformed Objects and Parts. Int. J. Comput. Vis. 77(1-3): 291-330 (2008) - [j3]Erik B. Sudderth, William T. Freeman:
Signal and Image Processing with Belief Propagation [DSP Applications]. IEEE Signal Process. Mag. 25(2): 114-141 (2008) - [c15]Emily B. Fox, Erik B. Sudderth, Michael I. Jordan, Alan S. Willsky:
An HDP-HMM for systems with state persistence. ICML 2008: 312-319 - [c14]Emily B. Fox, Erik B. Sudderth, Michael I. Jordan, Alan S. Willsky:
Nonparametric Bayesian Learning of Switching Linear Dynamical Systems. NIPS 2008: 457-464 - [c13]Erik B. Sudderth, Michael I. Jordan:
Shared Segmentation of Natural Scenes Using Dependent Pitman-Yor Processes. NIPS 2008: 1585-1592 - 2007
- [c12]Emily B. Fox, Erik B. Sudderth, Alan S. Willsky:
Hierarchical Dirichlet processes for tracking maneuvering targets. FUSION 2007: 1-8 - [c11]Jyri J. Kivinen, Erik B. Sudderth, Michael I. Jordan:
Learning Multiscale Representations of Natural Scenes Using Dirichlet Processes. ICCV 2007: 1-8 - [c10]Jyri J. Kivinen, Erik B. Sudderth, Michael I. Jordan:
Image Denoising with Nonparametric Hidden Markov Trees. ICIP (3) 2007: 121-124 - [c9]Erik B. Sudderth, Martin J. Wainwright, Alan S. Willsky:
Loop Series and Bethe Variational Bounds in Attractive Graphical Models. NIPS 2007: 1425-1432 - 2006
- [b1]Erik B. Sudderth:
Graphical models for visual object recognition and tracking. Massachusetts Institute of Technology, Cambridge, MA, USA, 2006 - [c8]Erik B. Sudderth, Antonio Torralba, William T. Freeman, Alan S. Willsky:
Depth from Familiar Objects: A Hierarchical Model for 3D Scenes. CVPR (2) 2006: 2410-2417 - 2005
- [c7]Erik B. Sudderth, Antonio Torralba, William T. Freeman, Alan S. Willsky:
Learning Hierarchical Models of Scenes, Objects, and Parts. ICCV 2005: 1331-1338 - [c6]Erik B. Sudderth, Antonio Torralba, William T. Freeman, Alan S. Willsky:
Describing Visual Scenes using Transformed Dirichlet Processes. NIPS 2005: 1297-1304 - 2004
- [j2]Erik B. Sudderth, Martin J. Wainwright, Alan S. Willsky:
Embedded trees: estimation of Gaussian Processes on graphs with cycles. IEEE Trans. Signal Process. 52(11): 3136-3150 (2004) - [c5]Erik B. Sudderth, Michael I. Mandel, William T. Freeman, Alan S. Willsky:
Visual Hand Tracking Using Nonparametric Belief Propagation. CVPR Workshops 2004: 189 - [c4]Erik B. Sudderth, Michael I. Mandel, William T. Freeman, Alan S. Willsky:
Distributed Occlusion Reasoning for Tracking with Nonparametric Belief Propagation. NIPS 2004: 1369-1376 - 2003
- [c3]Erik B. Sudderth, Alexander T. Ihler, William T. Freeman, Alan S. Willsky:
Nonparametric Belief Propagation. CVPR (1) 2003: 605-612 - [c2]Alexander T. Ihler, Erik B. Sudderth, William T. Freeman, Alan S. Willsky:
Efficient Multiscale Sampling from Products of Gaussian Mixtures. NIPS 2003: 1-8 - 2002
- [j1]John W. Fisher III, Martin J. Wainwright, Erik B. Sudderth, Alan S. Willsky:
Statistical and Information-Theoretic Methods for Self-Organization and Fusion of Multimodal, Networked Sensors. Int. J. High Perform. Comput. Appl. 16(3): 337-353 (2002) - 2000
- [c1]Martin J. Wainwright, Erik B. Sudderth, Alan S. Willsky:
Tree-Based Modeling and Estimation of Gaussian Processes on Graphs with Cycles. NIPS 2000: 661-667
Coauthor Index
manage site settings
To protect your privacy, all features that rely on external API calls from your browser are turned off by default. You need to opt-in for them to become active. All settings here will be stored as cookies with your web browser. For more information see our F.A.Q.
Unpaywalled article links
Add open access links from to the list of external document links (if available).
Privacy notice: By enabling the option above, your browser will contact the API of unpaywall.org to load hyperlinks to open access articles. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Unpaywall privacy policy.
Archived links via Wayback Machine
For web page which are no longer available, try to retrieve content from the of the Internet Archive (if available).
Privacy notice: By enabling the option above, your browser will contact the API of archive.org to check for archived content of web pages that are no longer available. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Internet Archive privacy policy.
Reference lists
Add a list of references from , , and to record detail pages.
load references from crossref.org and opencitations.net
Privacy notice: By enabling the option above, your browser will contact the APIs of crossref.org, opencitations.net, and semanticscholar.org to load article reference information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Crossref privacy policy and the OpenCitations privacy policy, as well as the AI2 Privacy Policy covering Semantic Scholar.
Citation data
Add a list of citing articles from and to record detail pages.
load citations from opencitations.net
Privacy notice: By enabling the option above, your browser will contact the API of opencitations.net and semanticscholar.org to load citation information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the OpenCitations privacy policy as well as the AI2 Privacy Policy covering Semantic Scholar.
OpenAlex data
Load additional information about publications from .
Privacy notice: By enabling the option above, your browser will contact the API of openalex.org to load additional information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the information given by OpenAlex.
last updated on 2024-07-25 20:22 CEST by the dblp team
all metadata released as open data under CC0 1.0 license
see also: Terms of Use | Privacy Policy | Imprint