default search action
Tess E. Smidt
Person information
- affiliation: Massachusetts Institute of Technology, Department of Electrical Engineering and Computer Science, Cambridge, MA, USA
- affiliation: Lawrence Berkeley National Laboratory, Berkeley, CA, USA
- affiliation (PhD 2018): University of California, Berkeley, CA, USA
Refine list
refinements active!
zoomed in on ?? of ?? records
view refined list in
export refined list as
2020 – today
- 2024
- [c9]Ameya Daigavane, Song Kim, Mario Geiger, Tess E. Smidt:
Symphony: Symmetry-Equivariant Point-Centered Spherical Harmonics for 3D Molecule Generation. ICLR 2024 - [c8]Yi-Lun Liao, Brandon M. Wood, Abhishek Das, Tess E. Smidt:
EquiformerV2: Improved Equivariant Transformer for Scaling to Higher-Degree Representations. ICLR 2024 - [c7]Rui Wang, Elyssa F. Hofgard, Hang Gao, Robin Walters, Tess E. Smidt:
Discovering Symmetry Breaking in Physical Systems with Relaxed Group Convolution. ICML 2024 - [i21]Yuqing Xie, Tess E. Smidt:
Equivariant Symmetry Breaking Sets. CoRR abs/2402.02681 (2024) - [i20]Yi-Lun Liao, Tess E. Smidt, Abhishek Das:
Generalizing Denoising to Non-Equilibrium Structures Improves Equivariant Force Fields. CoRR abs/2403.09549 (2024) - [i19]Xiang Fu, Andrew S. Rosen, Kyle Bystrom, Rui Wang, Albert Musaelian, Boris Kozinsky, Tess E. Smidt, Tommi S. Jaakkola:
A Recipe for Charge Density Prediction. CoRR abs/2405.19276 (2024) - [i18]Elyssa F. Hofgard, Rui Wang, Robin Walters, Tess E. Smidt:
Relaxed Equivariant Graph Neural Networks. CoRR abs/2407.20471 (2024) - 2023
- [j2]Joshua A. Rackers, Lucas Tecot, Mario Geiger, Tess E. Smidt:
A recipe for cracking the quantum scaling limit with machine learned electron densities. Mach. Learn. Sci. Technol. 4(1): 15027 (2023) - [c6]Yi-Lun Liao, Tess E. Smidt:
Equiformer: Equivariant Graph Attention Transformer for 3D Atomistic Graphs. ICLR 2023 - [c5]Derek Lim, Joshua David Robinson, Lingxiao Zhao, Tess E. Smidt, Suvrit Sra, Haggai Maron, Stefanie Jegelka:
Sign and Basis Invariant Networks for Spectral Graph Representation Learning. ICLR 2023 - [c4]Ilyes Batatia, Mario Geiger, Jose M. Munoz, Tess E. Smidt, Lior Silberman, Christoph Ortner:
A General Framework for Equivariant Neural Networks on Reductive Lie Groups. NeurIPS 2023 - [i17]Ilyes Batatia, Mario Geiger, Jose M. Munoz, Tess E. Smidt, Lior Silberman, Christoph Ortner:
A General Framework for Equivariant Neural Networks on Reductive Lie Groups. CoRR abs/2306.00091 (2023) - [i16]Yi-Lun Liao, Brandon M. Wood, Abhishek Das, Tess E. Smidt:
EquiformerV2: Improved Equivariant Transformer for Scaling to Higher-Degree Representations. CoRR abs/2306.12059 (2023) - [i15]Xuan Zhang, Limei Wang, Jacob Helwig, Youzhi Luo, Cong Fu, Yaochen Xie, Meng Liu, Yuchao Lin, Zhao Xu, Keqiang Yan, Keir Adams, Maurice Weiler, Xiner Li, Tianfan Fu, Yucheng Wang, Haiyang Yu, Yuqing Xie, Xiang Fu, Alex Strasser, Shenglong Xu, Yi Liu, Yuanqi Du, Alexandra Saxton, Hongyi Ling, Hannah Lawrence, Hannes Stärk, Shurui Gui, Carl Edwards, Nicholas Gao, Adriana Ladera, Tailin Wu, Elyssa F. Hofgard, Aria Mansouri Tehrani, Rui Wang, Ameya Daigavane, Montgomery Bohde, Jerry Kurtin, Qian Huang, Tuong Phung, Minkai Xu, Chaitanya K. Joshi, Simon V. Mathis, Kamyar Azizzadenesheli, Ada Fang, Alán Aspuru-Guzik, Erik J. Bekkers, Michael M. Bronstein, Marinka Zitnik, Anima Anandkumar, Stefano Ermon, Pietro Liò, Rose Yu, Stephan Günnemann, Jure Leskovec, Heng Ji, Jimeng Sun, Regina Barzilay, Tommi S. Jaakkola, Connor W. Coley, Xiaoning Qian, Xiaofeng Qian, Tess E. Smidt, Shuiwang Ji:
Artificial Intelligence for Science in Quantum, Atomistic, and Continuum Systems. CoRR abs/2307.08423 (2023) - [i14]Rui Wang, Robin Walters, Tess E. Smidt:
Relaxed Octahedral Group Convolution for Learning Symmetry Breaking in 3D Physical Systems. CoRR abs/2310.02299 (2023) - [i13]Allan dos Santos Costa, Ilan Mitnikov, Mario Geiger, Manvitha Ponnapati, Tess E. Smidt, Joseph Jacobson:
Ophiuchus: Scalable Modeling of Protein Structures through Hierarchical Coarse-graining SO(3)-Equivariant Autoencoders. CoRR abs/2310.02508 (2023) - [i12]Ameya Daigavane, Song Kim, Mario Geiger, Tess E. Smidt:
Symphony: Symmetry-Equivariant Point-Centered Spherical Harmonics for Molecule Generation. CoRR abs/2311.16199 (2023) - 2022
- [j1]Alice Gatti, Zhixiong Hu, Tess E. Smidt, Esmond G. Ng, Pieter Ghysels:
Graph Partitioning and Sparse Matrix Ordering using Reinforcement Learning and Graph Neural Networks. J. Mach. Learn. Res. 23: 303:1-303:28 (2022) - [c3]Wujie Wang, Minkai Xu, Chen Cai, Benjamin Kurt Miller, Tess E. Smidt, Yusu Wang, Jian Tang, Rafael Gómez-Bombarelli:
Generative Coarse-Graining of Molecular Conformations. ICML 2022: 23213-23236 - [c2]Alice Gatti, Zhixiong Hu, Tess E. Smidt, Esmond G. Ng, Pieter Ghysels:
Deep Learning and Spectral Embedding for Graph Partitioning. PP 2022: 25-36 - [i11]Wujie Wang, Minkai Xu, Chen Cai, Benjamin Kurt Miller, Tess E. Smidt, Yusu Wang, Jian Tang, Rafael Gómez-Bombarelli:
Generative Coarse-Graining of Molecular Conformations. CoRR abs/2201.12176 (2022) - [i10]Derek Lim, Joshua Robinson, Lingxiao Zhao, Tess E. Smidt, Suvrit Sra, Haggai Maron, Stefanie Jegelka:
Sign and Basis Invariant Networks for Spectral Graph Representation Learning. CoRR abs/2202.13013 (2022) - [i9]Yi-Lun Liao, Tess E. Smidt:
Equiformer: Equivariant Graph Attention Transformer for 3D Atomistic Graphs. CoRR abs/2206.11990 (2022) - [i8]Mario Geiger, Tess E. Smidt:
e3nn: Euclidean Neural Networks. CoRR abs/2207.09453 (2022) - [i7]Ameya Daigavane, Arthur Kosmala, Miles D. Cranmer, Tess E. Smidt, Shirley Ho:
Learning Integrable Dynamics with Action-Angle Networks. CoRR abs/2211.15338 (2022) - 2021
- [c1]Oliver T. Unke, Mihail Bogojeski, Michael Gastegger, Mario Geiger, Tess E. Smidt, Klaus-Robert Müller:
SE(3)-equivariant prediction of molecular wavefunctions and electronic densities. NeurIPS 2021: 14434-14447 - [i6]Simon L. Batzner, Tess E. Smidt, Lixin Sun, Jonathan P. Mailoa, Mordechai Kornbluth, Nicola Molinari, Boris Kozinsky:
SE(3)-Equivariant Graph Neural Networks for Data-Efficient and Accurate Interatomic Potentials. CoRR abs/2101.03164 (2021) - [i5]Alice Gatti, Zhixiong Hu, Pieter Ghysels, Esmond G. Ng, Tess E. Smidt:
Graph Partitioning and Sparse Matrix Ordering using Reinforcement Learning. CoRR abs/2104.03546 (2021) - [i4]Alice Gatti, Zhixiong Hu, Tess E. Smidt, Esmond G. Ng, Pieter Ghysels:
Deep Learning and Spectral Embedding for Graph Partitioning. CoRR abs/2110.08614 (2021) - 2020
- [i3]Tess E. Smidt, Mario Geiger, Benjamin Kurt Miller:
Finding Symmetry Breaking Order Parameters with Euclidean Neural Networks. CoRR abs/2007.02005 (2020) - [i2]Benjamin Kurt Miller, Mario Geiger, Tess E. Smidt, Frank Noé:
Relevance of Rotationally Equivariant Convolutions for Predicting Molecular Properties. CoRR abs/2008.08461 (2020)
2010 – 2019
- 2018
- [b1]Tess E. Smidt:
Toward the Systematic Design of Complex Materials from Structural Motifs. University of California, Berkeley, USA, 2018 - [i1]Nathaniel Thomas, Tess E. Smidt, Steven Kearnes, Lusann Yang, Li Li, Kai Kohlhoff, Patrick Riley:
Tensor Field Networks: Rotation- and Translation-Equivariant Neural Networks for 3D Point Clouds. CoRR abs/1802.08219 (2018)
Coauthor Index
manage site settings
To protect your privacy, all features that rely on external API calls from your browser are turned off by default. You need to opt-in for them to become active. All settings here will be stored as cookies with your web browser. For more information see our F.A.Q.
Unpaywalled article links
Add open access links from to the list of external document links (if available).
Privacy notice: By enabling the option above, your browser will contact the API of unpaywall.org to load hyperlinks to open access articles. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Unpaywall privacy policy.
Archived links via Wayback Machine
For web page which are no longer available, try to retrieve content from the of the Internet Archive (if available).
Privacy notice: By enabling the option above, your browser will contact the API of archive.org to check for archived content of web pages that are no longer available. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Internet Archive privacy policy.
Reference lists
Add a list of references from , , and to record detail pages.
load references from crossref.org and opencitations.net
Privacy notice: By enabling the option above, your browser will contact the APIs of crossref.org, opencitations.net, and semanticscholar.org to load article reference information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Crossref privacy policy and the OpenCitations privacy policy, as well as the AI2 Privacy Policy covering Semantic Scholar.
Citation data
Add a list of citing articles from and to record detail pages.
load citations from opencitations.net
Privacy notice: By enabling the option above, your browser will contact the API of opencitations.net and semanticscholar.org to load citation information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the OpenCitations privacy policy as well as the AI2 Privacy Policy covering Semantic Scholar.
OpenAlex data
Load additional information about publications from .
Privacy notice: By enabling the option above, your browser will contact the API of openalex.org to load additional information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the information given by OpenAlex.
last updated on 2024-09-13 01:40 CEST by the dblp team
all metadata released as open data under CC0 1.0 license
see also: Terms of Use | Privacy Policy | Imprint