default search action
Johannes Grohmann
Person information
Refine list
refinements active!
zoomed in on ?? of ?? records
view refined list in
export refined list as
Books and Theses
- 2022
- [b1]Johannes Grohmann:
Model Learning for Performance Prediction of Cloud-native Microservice Applications. Julius Maximilians University Würzburg, Germany, 2022
Journal Articles
- 2022
- [j7]Simon Eismann, Joel Scheuner, Erwin Van Eyk, Maximilian Schwinger, Johannes Grohmann, Nikolas Herbst, Cristina L. Abad, Alexandru Iosup:
The State of Serverless Applications: Collection, Characterization, and Community Consensus. IEEE Trans. Software Eng. 48(10): 4152-4166 (2022) - 2021
- [j6]Simon Eismann, Joel Scheuner, Erwin Van Eyk, Maximilian Schwinger, Johannes Grohmann, Nikolas Herbst, Cristina L. Abad, Alexandru Iosup:
Serverless Applications: Why, When, and How? IEEE Softw. 38(1): 32-39 (2021) - [j5]Johannes Grohmann, Simon Eismann, André Bauer, Simon Spinner, Johannes Blum, Nikolas Herbst, Samuel Kounev:
SARDE: A Framework for Continuous and Self-Adaptive Resource Demand Estimation. ACM Trans. Auton. Adapt. Syst. 15(2): 6:1-6:31 (2021) - 2020
- [j4]Johannes Grohmann, Nikolas Herbst, Avi Chalbani, Yair Arian, Noam Peretz, Samuel Kounev:
A Taxonomy of Techniques for SLO Failure Prediction in Software Systems. Comput. 9(1): 10 (2020) - 2019
- [j3]Erwin Van Eyk, Alexandru Iosup, Johannes Grohmann, Simon Eismann, André Bauer, Laurens Versluis, Lucian Toader, Norbert Schmitt, Nikolas Herbst, Cristina L. Abad:
The SPEC-RG Reference Architecture for FaaS: From Microservices and Containers to Serverless Platforms. IEEE Internet Comput. 23(6): 7-18 (2019) - [j2]Simon Spinner, Johannes Grohmann, Simon Eismann, Samuel Kounev:
Online model learning for self-aware computing infrastructures. J. Syst. Softw. 147: 1-16 (2019) - [j1]Johannes Grohmann, Simon Eismann, Samuel Kounev:
On Learning Parametric Dependencies from Monitoring Data. Softwaretechnik-Trends 39(4): 14-16 (2019)
Conference and Workshop Papers
- 2022
- [c39]Stefan Herrnleben, Johannes Grohmann, Veronika Lesch, Thomas Prantl, Florian Metzger, Tobias Hoßfeld, Samuel Kounev:
Investigating the Predictability of QoS Metrics in Cellular Networks. IWQoS 2022: 1-10 - [c38]Mark Leznik, Johannes Grohmann, Nina Kliche, André Bauer, Daniel Seybold, Simon Eismann, Samuel Kounev, Jörg Domaschka:
Same, Same, but Dissimilar: Exploring Measurements for Workload Time-series Similarity. ICPE 2022: 89-96 - [c37]Martin Straesser, Johannes Grohmann, Jóakim von Kistowski, Simon Eismann, André Bauer, Samuel Kounev:
Why Is It Not Solved Yet?: Challenges for Production-Ready Autoscaling. ICPE 2022: 105-115 - 2021
- [c36]Marwin Züfle, Joachim Agne, Johannes Grohmann, Ibrahim Dörtoluk, Samuel Kounev:
A Predictive Maintenance Methodology: Predicting the Time-to-Failure of Machines in Industry 4.0. INDIN 2021: 1-8 - [c35]Simon Eismann, Long Bui, Johannes Grohmann, Cristina L. Abad, Nikolas Herbst, Samuel Kounev:
Sizeless: predicting the optimal size of serverless functions. Middleware 2021: 248-259 - [c34]Stefan Herrnleben, Maximilian Leidinger, Veronika Lesch, Thomas Prantl, Johannes Grohmann, Christian Krupitzer, Samuel Kounev:
ComBench: A Benchmarking Framework for Publish/Subscribe Communication Protocols Under Network Limitations. VALUETOOLS 2021: 72-92 - [c33]Johannes Grohmann, Martin Straesser, Avi Chalbani, Simon Eismann, Yair Arian, Nikolas Herbst, Noam Peretz, Samuel Kounev:
SuanMing: Explainable Prediction of Performance Degradations in Microservice Applications. ICPE 2021: 165-176 - [c32]Jörg Domaschka, Mark Leznik, Daniel Seybold, Simon Eismann, Johannes Grohmann, Samuel Kounev:
Buzzy: Towards Realistic DBMS Benchmarking via Tailored, Representative, Synthetic Workloads: Vision Paper. ICPE (Companion) 2021: 175-178 - [c31]André Bauer, Marwin Züfle, Simon Eismann, Johannes Grohmann, Nikolas Herbst, Samuel Kounev:
Libra: A Benchmark for Time Series Forecasting Methods. ICPE 2021: 189-200 - 2020
- [c30]Mirko D'Angelo, Sona Ghahremani, Simos Gerasimou, Johannes Grohmann, Ingrid Nunes, Sven Tomforde, Evangelos Pournaras:
Learning to Learn in Collective Adaptive Systems: Mining Design Patterns for Data-driven Reasoning. ACSOS Companion 2020: 121-126 - [c29]Sonya Voneva, Manar Mazkatli, Johannes Grohmann, Anne Koziolek:
Optimizing Parametric Dependencies for Incremental Performance Model Extraction. ECSA Companion 2020: 228-240 - [c28]Manar Mazkatli, David Monschein, Johannes Grohmann, Anne Koziolek:
Incremental Calibration of Architectural Performance Models with Parametric Dependencies. ICSA 2020: 23-34 - [c27]Johannes Grohmann, Daniel Seybold, Simon Eismann, Mark Leznik, Samuel Kounev, Jörg Domaschka:
Baloo: Measuring and Modeling the Performance Configurations of Distributed DBMS. MASCOTS 2020: 1-8 - [c26]Marwin Züfle, Christian Krupitzer, Florian Erhard, Johannes Grohmann, Samuel Kounev:
To Fail or Not to Fail: Predicting Hard Disk Drive Failure Time Windows. MMB 2020: 19-36 - [c25]Stefan Herrnleben, Piotr Rygielski, Johannes Grohmann, Simon Eismann, Tobias Hoßfeld, Samuel Kounev:
Model-Based Performance Predictions for SDN-Based Networks: A Case Study. MMB 2020: 82-98 - [c24]Stefan Herrnleben, Johannes Grohmann, Piotr Rygielski, Veronika Lesch, Christian Krupitzer, Samuel Kounev:
A Simulation-Based Optimization Framework for Online Adaptation of Networks. SimuTools (1) 2020: 513-532 - [c23]Stefan Herrnleben, Rudy Ailabouni, Johannes Grohmann, Thomas Prantl, Christian Krupitzer, Samuel Kounev:
An IoT Network Emulator for Analyzing the Influence of Varying Network Quality. SimuTools (2) 2020: 580-599 - [c22]André Bauer, Marwin Züfle, Johannes Grohmann, Norbert Schmitt, Nikolas Herbst, Samuel Kounev:
An Automated Forecasting Framework based on Method Recommendation for Seasonal Time Series. ICPE 2020: 48-55 - [c21]Simon Eismann, Johannes Grohmann, Erwin Van Eyk, Nikolas Herbst, Samuel Kounev:
Predicting the Costs of Serverless Workflows. ICPE 2020: 265-276 - 2019
- [c20]Simon Eismann, Johannes Grohmann, Jürgen Walter, Jóakim von Kistowski, Samuel Kounev:
Integrating Statistical Response Time Models in Architectural Performance Models. ICSA 2019: 71-80 - [c19]Mirko D'Angelo, Simos Gerasimou, Sona Ghahremani, Johannes Grohmann, Ingrid Nunes, Evangelos Pournaras, Sven Tomforde:
On learning in collective self-adaptive systems: state of practice and a 3D framework. SEAMS@ICSE 2019: 13-24 - [c18]Johannes Grohmann, Simon Eismann, Sven Elflein, Jóakim von Kistowski, Samuel Kounev, Manar Mazkatli:
Detecting Parametric Dependencies for Performance Models Using Feature Selection Techniques. MASCOTS 2019: 309-322 - [c17]Johannes Grohmann, Patrick K. Nicholson, Jesús Omana Iglesias, Samuel Kounev, Diego Lugones:
Monitorless: Predicting Performance Degradation in Cloud Applications with Machine Learning. Middleware 2019: 149-162 - [c16]André Bauer, Simon Eismann, Johannes Grohmann, Nikolas Herbst, Samuel Kounev:
Systematic Search for Optimal Resource Configurations of Distributed Applications. FAS*W@SASO/ICAC 2019: 120-125 - [c15]Johannes Grohmann, Simon Eismann, André Bauer, Marwin Züfle, Nikolas Herbst, Samuel Kounev:
Utilizing Clustering to Optimize Resource Demand Estimation Approaches. FAS*W@SASO/ICAC 2019: 134-139 - [c14]Simon Eismann, Jóakim von Kistowski, Johannes Grohmann, André Bauer, Norbert Schmitt, Samuel Kounev:
TeaStore - A Micro-Service Reference Application. FAS*W@SASO/ICAC 2019: 263-264 - [c13]Jóakim von Kistowski, Simon Eismann, Norbert Schmitt, André Bauer, Johannes Grohmann, Samuel Kounev:
TeaStore: A Micro-Service Reference Application for Benchmarking, Modeling and Resource Management Research. SE/SWM 2019: 99-100 - [c12]Cor-Paul Bezemer, Simon Eismann, Vincenzo Ferme, Johannes Grohmann, Robert Heinrich, Pooyan Jamshidi, Weiyi Shang, André van Hoorn, Mónica Villavicencio, Jürgen Walter, Felix Willnecker:
How is Performance Addressed in DevOps? ICPE 2019: 45-50 - [c11]Jóakim von Kistowski, Simon Eismann, Johannes Grohmann, Norbert Schmitt, André Bauer, Samuel Kounev:
TeaStore - A Micro-Service Reference Application for Performance Engineers. ICPE Companion 2019: 47-48 - [c10]Jóakim von Kistowski, Johannes Grohmann, Norbert Schmitt, Samuel Kounev:
Predicting Server Power Consumption from Standard Rating Results. ICPE 2019: 301-312 - 2018
- [c9]Johannes Grohmann, Nikolas Herbst, Simon Spinner, Samuel Kounev:
Using Machine Learning for Recommending Service Demand Estimation Approaches - Position Paper. CLOSER 2018: 473-480 - [c8]Johannes Grohmann, Simon Eismann, Samuel Kounev:
The Vision of Self-Aware Performance Models. ICSA Companion 2018: 60-63 - [c7]Jóakim von Kistowski, Simon Eismann, Norbert Schmitt, André Bauer, Johannes Grohmann, Samuel Kounev:
TeaStore: A Micro-Service Reference Application for Benchmarking, Modeling and Resource Management Research. MASCOTS 2018: 223-236 - [c6]André Bauer, Johannes Grohmann, Nikolas Herbst, Samuel Kounev:
On the Value of Service Demand Estimation for Auto-scaling. MMB 2018: 142-156 - [c5]Vanessa Ackermann, Johannes Grohmann, Simon Eismann, Samuel Kounev:
Blackbox Learning of Parametric Dependencies for Performance Models. MoDELS (Workshops) 2018: 78-86 - [c4]Simon Eismann, Jóakim von Kistowski, Johannes Grohmann, André Bauer, Norbert Schmitt, Nikolas Herbst, Samuel Kounev:
TeaStore: A Micro-Service Reference Application for Cloud Researchers. UCC Companion 2018: 11-12 - [c3]Erwin Van Eyk, Alexandru Iosup, Cristina L. Abad, Johannes Grohmann, Simon Eismann:
A SPEC RG Cloud Group's Vision on the Performance Challenges of FaaS Cloud Architectures. ICPE Companion 2018: 21-24 - [c2]Jürgen Walter, Simon Eismann, Johannes Grohmann, Dusan Okanovic, Samuel Kounev:
Tools for Declarative Performance Engineering. ICPE Companion 2018: 53-56 - 2017
- [c1]Johannes Grohmann, Nikolas Herbst, Simon Spinner, Samuel Kounev:
Self-Tuning Resource Demand Estimation. ICAC 2017: 21-26
Informal and Other Publications
- 2020
- [i6]Manar Mazkatli, David Monschein, Johannes Grohmann, Anne Koziolek:
Incremental Calibration of Architectural Performance Models with Parametric Dependencies. CoRR abs/2006.16953 (2020) - [i5]Mirko D'Angelo, Sona Ghahremani, Simos Gerasimou, Johannes Grohmann, Ingrid Nunes, Sven Tomforde, Evangelos Pournaras:
Learning to Learn in Collective Adaptive Systems: Mining Design Patterns for Data-driven Reasoning. CoRR abs/2008.03995 (2020) - [i4]Simon Eismann, Joel Scheuner, Erwin Van Eyk, Maximilian Schwinger, Johannes Grohmann, Nikolas Herbst, Cristina L. Abad, Alexandru Iosup:
A Review of Serverless Use Cases and their Characteristics. CoRR abs/2008.11110 (2020) - [i3]Simon Eismann, Joel Scheuner, Erwin Van Eyk, Maximilian Schwinger, Johannes Grohmann, Cristina L. Abad, Alexandru Iosup:
Serverless Applications: Why, When, and How? CoRR abs/2009.08173 (2020) - [i2]Simon Eismann, Long Bui, Johannes Grohmann, Cristina L. Abad, Nikolas Herbst, Samuel Kounev:
Sizeless: Predicting the optimal size of serverless functions. CoRR abs/2010.15162 (2020) - 2018
- [i1]Cor-Paul Bezemer, Simon Eismann, Vincenzo Ferme, Johannes Grohmann, Robert Heinrich, Pooyan Jamshidi, Weiyi Shang, André van Hoorn, Mónica Villavicencio, Jürgen Walter, Felix Willnecker:
How is Performance Addressed in DevOps? A Survey on Industrial Practices. CoRR abs/1808.06915 (2018)
Coauthor Index
manage site settings
To protect your privacy, all features that rely on external API calls from your browser are turned off by default. You need to opt-in for them to become active. All settings here will be stored as cookies with your web browser. For more information see our F.A.Q.
Unpaywalled article links
Add open access links from to the list of external document links (if available).
Privacy notice: By enabling the option above, your browser will contact the API of unpaywall.org to load hyperlinks to open access articles. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Unpaywall privacy policy.
Archived links via Wayback Machine
For web page which are no longer available, try to retrieve content from the of the Internet Archive (if available).
Privacy notice: By enabling the option above, your browser will contact the API of archive.org to check for archived content of web pages that are no longer available. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Internet Archive privacy policy.
Reference lists
Add a list of references from , , and to record detail pages.
load references from crossref.org and opencitations.net
Privacy notice: By enabling the option above, your browser will contact the APIs of crossref.org, opencitations.net, and semanticscholar.org to load article reference information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Crossref privacy policy and the OpenCitations privacy policy, as well as the AI2 Privacy Policy covering Semantic Scholar.
Citation data
Add a list of citing articles from and to record detail pages.
load citations from opencitations.net
Privacy notice: By enabling the option above, your browser will contact the API of opencitations.net and semanticscholar.org to load citation information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the OpenCitations privacy policy as well as the AI2 Privacy Policy covering Semantic Scholar.
OpenAlex data
Load additional information about publications from .
Privacy notice: By enabling the option above, your browser will contact the API of openalex.org to load additional information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the information given by OpenAlex.
last updated on 2024-10-07 22:14 CEST by the dblp team
all metadata released as open data under CC0 1.0 license
see also: Terms of Use | Privacy Policy | Imprint