default search action
Michael Neilan
Person information
Refine list
refinements active!
zoomed in on ?? of ?? records
view refined list in
export refined list as
2020 – today
- 2024
- [j39]Rebecca Durst, Michael Neilan:
A General Degree Divergence-Free Finite Element Method for the Two-Dimensional Stokes Problem on Smooth Domains. J. Sci. Comput. 101(2): 33 (2024) - [j38]Alan Demlow, Michael Neilan:
A Tangential and Penalty-Free Finite Element Method for the Surface Stokes Problem. SIAM J. Numer. Anal. 62(1): 248-272 (2024) - [i14]Rebecca Durst, Michael Neilan:
General degree divergence-free finite element methods for the Stokes problem on smooth domains. CoRR abs/2404.14226 (2024) - 2023
- [j37]Haoran Liu, Michael Neilan, M. Baris Otus:
A divergence-free finite element method for the Stokes problem with boundary correction. J. Num. Math. 31(2): 105-124 (2023) - [j36]Sining Gong, Johnny Guzmán, Michael Neilan:
A Note on the Shape Regularity of Worsey-Farin Splits. J. Sci. Comput. 95(2): 46 (2023) - [i13]Sining Gong, Jay Gopalakrishnan, Johnny Guzmán, Michael Neilan:
Discrete Elasticity Exact Sequences on Worsey-Farin splits. CoRR abs/2302.08598 (2023) - [i12]Alan Demlow, Michael Neilan:
A tangential and penalty-free finite element method for the surface Stokes problem. CoRR abs/2307.01435 (2023) - [i11]Michael Neilan, Maxim A. Olshanskii:
An Eulerian finite element method for the linearized Navier-Stokes problem in an evolving domain. CoRR abs/2308.01444 (2023) - 2022
- [j35]Johnny Guzmán, Anna Lischke, Michael Neilan:
Exact sequences on Worsey-Farin splits. Math. Comput. 91(338): 2571-2608 (2022) - [i10]Daniele Boffi, Sining Gong, Johnny Guzmán, Michael Neilan:
Convergence of Lagrange Finite Element Methods for Maxwell Eigenvalue Problem in 3D. CoRR abs/2204.10876 (2022) - [i9]Sining Gong, Johnny Guzmán, Michael Neilan:
A Note on the Shape Regularity of Worsey-Farin Splits. CoRR abs/2205.05059 (2022) - 2021
- [j34]Michael Neilan, M. Baris Otus:
Divergence-free Scott-Vogelius Elements on Curved Domains. SIAM J. Numer. Anal. 59(2): 1090-1116 (2021) - [i8]Maurice Fabien, Johnny Guzmán, Michael Neilan, Ahmed Zytoon:
Low-order divergence-free approximations for the Stokes problem on Worsey-Farin and Powell-Sabin splits. CoRR abs/2105.09214 (2021) - [i7]Haoran Liu, Michael Neilan, M. Baris Otus:
A divergence-free finite element method for the Stokes problem with boundary correction. CoRR abs/2105.10409 (2021) - [i6]Kiera Kean, Michael Neilan, Michael Schneier:
The Scott-Vogelius Method for Stokes Problem on Anisotropic Meshes. CoRR abs/2109.14780 (2021) - [i5]Haoran Liu, Michael Neilan, Maxim A. Olshanskii:
A CutFEM divergence-free discretization for the Stokes problem. CoRR abs/2110.11456 (2021) - 2020
- [j33]Guosheng Fu, Johnny Guzmán, Michael Neilan:
Exact smooth piecewise polynomial sequences on Alfeld splits. Math. Comput. 89(323): 1059-1091 (2020) - [p1]Michael Neilan:
The Stokes complex: A review of exactly divergence-free finite element pairs for incompressible flows. 75 Years of Mathematics of Computation 2020 - [i4]Daniele Boffi, Johnny Guzmán, Michael Neilan:
Convergence of Lagrange finite elements for the Maxwell Eigenvalue Problem in 2D. CoRR abs/2003.08381 (2020) - [i3]Johnny Guzmán, Anna Lischke, Michael Neilan:
Exact sequences on Worsey-Farin Splits. CoRR abs/2008.05431 (2020) - [i2]Michael Neilan, M. Baris Otus:
Divergence-free Scott-Vogelius elements on curved domains. CoRR abs/2008.06429 (2020)
2010 – 2019
- 2019
- [j32]Michael Neilan, Mohan Wu:
Discrete Miranda-Talenti estimates and applications to linear and nonlinear PDEs. J. Comput. Appl. Math. 356: 358-376 (2019) - [i1]Alexander Linke, Christian Merdon, Michael Neilan:
Pressure-robustness in quasi-optimal a priori estimates for the Stokes problem. CoRR abs/1906.03009 (2019) - 2018
- [j31]Xiaobing Feng, Michael Neilan, Stefan Schnake:
Interior Penalty Discontinuous Galerkin Methods for Second Order Linear Non-divergence Form Elliptic PDEs. J. Sci. Comput. 74(3): 1651-1676 (2018) - [j30]Alexander Linke, Christian Merdon, Michael Neilan, Felix Neumann:
Quasi-optimality of a pressure-robust nonconforming finite element method for the Stokes-Problem. Math. Comput. 87(312): 1543-1566 (2018) - [j29]Johnny Guzmán, Michael Neilan:
Inf-Sup Stable Finite Elements on Barycentric Refinements Producing Divergence-Free Approximations in Arbitrary Dimensions. SIAM J. Numer. Anal. 56(5): 2826-2844 (2018) - [j28]Michael Neilan, Wujun Zhang:
Rates of Convergence in W2p-Norm for the Monge-Ampère Equation. SIAM J. Numer. Anal. 56(5): 3099-3120 (2018) - 2017
- [j27]Michael Neilan, Abner J. Salgado, Wujun Zhang:
Numerical analysis of strongly nonlinear PDEs. Acta Numer. 26: 137-303 (2017) - [j26]Michael Neilan:
Convergence analysis of a finite element method for second order non-variational elliptic problems. J. Num. Math. 25(3): 169-184 (2017) - [j25]Alexander Linke, Michael Neilan, Leo G. Rebholz, Nicholas E. Wilson:
A connection between coupled and penalty projection timestepping schemes with FE spatial discretization for the Navier-Stokes equations. J. Num. Math. 25(4): 229-248 (2017) - [j24]Harri Hakula, Michael Neilan, Jeffrey S. Ovall:
A Posteriori Estimates Using Auxiliary Subspace Techniques. J. Sci. Comput. 72(1): 97-127 (2017) - [j23]Xiaobing Feng, Lauren Hennings, Michael Neilan:
Finite element methods for second order linear elliptic partial differential equations in non-divergence form. Math. Comput. 86(307): 2025-2051 (2017) - [j22]Susanne C. Brenner, Michael Neilan, Armin Reiser, Li-Yeng Sung:
A \(C^0\) interior penalty method for a von Kármán plate. Numerische Mathematik 135(3): 803-832 (2017) - [j21]Volker John, Alexander Linke, Christian Merdon, Michael Neilan, Leo G. Rebholz:
On the Divergence Constraint in Mixed Finite Element Methods for Incompressible Flows. SIAM Rev. 59(3): 492-544 (2017) - 2016
- [j20]Eligio Colmenares, Michael Neilan:
Dual-mixed finite element methods for the stationary Boussinesq problem. Comput. Math. Appl. 72(7): 1828-1850 (2016) - [j19]Xiaobing Feng, Thomas L. Lewis, Michael Neilan:
Discontinuous Galerkin finite element differential calculus and applications to numerical solutions of linear and nonlinear partial differential equations. J. Comput. Appl. Math. 299: 68-91 (2016) - 2015
- [j18]Michael Neilan:
Discrete and conforming smooth de Rham complexes in three dimensions. Math. Comput. 84(295): 2059-2081 (2015) - [c1]Lorenz John, Michael Neilan, Iain Smears:
Stable Discontinuous Galerkin FEM Without Penalty Parameters. ENUMATH 2015: 165-173 - 2014
- [j17]Xiaobing Feng, Michael Neilan:
Finite element approximations of general fully nonlinear second order elliptic partial differential equations based on the vanishing moment method. Comput. Math. Appl. 68(12): 2182-2204 (2014) - [j16]Michael Neilan:
Finite element methods for fully nonlinear second order PDEs based on a discrete Hessian with applications to the Monge-Ampère equation. J. Comput. Appl. Math. 263: 351-369 (2014) - [j15]Thomas L. Lewis, Michael Neilan:
Convergence Analysis of a Symmetric Dual-Wind Discontinuous Galerkin Method. J. Sci. Comput. 59(3): 602-625 (2014) - [j14]Johnny Guzmán, Michael Neilan:
Conforming and divergence-free Stokes elements on general triangular meshes. Math. Comput. 83(285): 15-36 (2014) - [j13]Johnny Guzmán, Michael Neilan:
Symmetric and conforming mixed finite elements for plane elasticity using rational bubble functions. Numerische Mathematik 126(1): 153-171 (2014) - 2013
- [j12]Michael Neilan:
Quadratic Finite Element Approximations of the Monge-Ampère Equation. J. Sci. Comput. 54(1): 200-226 (2013) - [j11]Richard S. Falk, Michael Neilan:
Stokes Complexes and the Construction of Stable Finite Elements with Pointwise Mass Conservation. SIAM J. Numer. Anal. 51(2): 1308-1326 (2013) - [j10]Xiaobing Feng, Roland Glowinski, Michael Neilan:
Recent Developments in Numerical Methods for Fully Nonlinear Second Order Partial Differential Equations. SIAM Rev. 55(2): 205-267 (2013) - 2011
- [j9]Xiaobing Feng, Michael Neilan:
Analysis of Galerkin Methods for the Fully Nonlinear Monge-Ampère Equation. J. Sci. Comput. 47(3): 303-327 (2011) - [j8]Xiaobing Feng, Michael Neilan:
Discontinuous finite element methods for a bi-wave equation modeling d-wave superconductors. Math. Comput. 80(275): 1303-1333 (2011) - [j7]Susanne C. Brenner, Thirupathi Gudi, Michael Neilan, Li-Yeng Sung:
C0 penalty methods for the fully nonlinear Monge-Ampère equation. Math. Comput. 80(276): 1979-1995 (2011) - [j6]Susanne C. Brenner, Michael Neilan:
A C0 Interior Penalty Method for a Fourth Order Elliptic Singular Perturbation Problem. SIAM J. Numer. Anal. 49(2): 869-892 (2011) - 2010
- [j5]Michael Neilan:
A nonconforming Morley finite element method for the fully nonlinear Monge-Ampère equation. Numerische Mathematik 115(3): 371-394 (2010)
2000 – 2009
- 2009
- [j4]Xiaobing Feng, Michael Neilan:
Vanishing Moment Method and Moment Solutions for Fully Nonlinear Second Order Partial Differential Equations. J. Sci. Comput. 38(1): 74-98 (2009) - [j3]Xiaobing Feng, Michael Neilan:
Mixed Finite Element Methods for the Fully Nonlinear Monge-Ampère Equation Based on the Vanishing Moment Method. SIAM J. Numer. Anal. 47(2): 1226-1250 (2009) - [j2]Xiaobing Feng, Michael Neilan:
A Modified Characteristic Finite Element Method for a Fully Nonlinear Formulation of the Semigeostrophic Flow Equations. SIAM J. Numer. Anal. 47(4): 2952-2981 (2009) - 2007
- [j1]Xiaobing Feng, Michael Neilan, Andreas Prohl:
Error analysis of finite element approximations of the inverse mean curvature flow arising from the general relativity. Numerische Mathematik 108(1): 93-119 (2007)
Coauthor Index
manage site settings
To protect your privacy, all features that rely on external API calls from your browser are turned off by default. You need to opt-in for them to become active. All settings here will be stored as cookies with your web browser. For more information see our F.A.Q.
Unpaywalled article links
Add open access links from to the list of external document links (if available).
Privacy notice: By enabling the option above, your browser will contact the API of unpaywall.org to load hyperlinks to open access articles. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Unpaywall privacy policy.
Archived links via Wayback Machine
For web page which are no longer available, try to retrieve content from the of the Internet Archive (if available).
Privacy notice: By enabling the option above, your browser will contact the API of archive.org to check for archived content of web pages that are no longer available. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Internet Archive privacy policy.
Reference lists
Add a list of references from , , and to record detail pages.
load references from crossref.org and opencitations.net
Privacy notice: By enabling the option above, your browser will contact the APIs of crossref.org, opencitations.net, and semanticscholar.org to load article reference information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Crossref privacy policy and the OpenCitations privacy policy, as well as the AI2 Privacy Policy covering Semantic Scholar.
Citation data
Add a list of citing articles from and to record detail pages.
load citations from opencitations.net
Privacy notice: By enabling the option above, your browser will contact the API of opencitations.net and semanticscholar.org to load citation information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the OpenCitations privacy policy as well as the AI2 Privacy Policy covering Semantic Scholar.
OpenAlex data
Load additional information about publications from .
Privacy notice: By enabling the option above, your browser will contact the API of openalex.org to load additional information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the information given by OpenAlex.
last updated on 2024-10-04 20:56 CEST by the dblp team
all metadata released as open data under CC0 1.0 license
see also: Terms of Use | Privacy Policy | Imprint