


Остановите войну!
for scientists:


default search action
Caiwen Ding
Person information

Refine list

refinements active!
zoomed in on ?? of ?? records
view refined list in
export refined list as
showing all ?? records
2020 – today
- 2023
- [i57]Hongwu Peng, Shanglin Zhou, Yukui Luo, Nuo Xu, Shijin Duan, Ran Ran, Jiahui Zhao, Shaoyi Huang, Xi Xie, Chenghong Wang, Tong Geng, Wujie Wen, Xiaolin Xu, Caiwen Ding:
RRNet: Towards ReLU-Reduced Neural Network for Two-party Computation Based Private Inference. CoRR abs/2302.02292 (2023) - [i56]Songyang Han, Shanglin Zhou, Lynn Pepin, Jiangwei Wang, Caiwen Ding, Fei Miao:
Shared Information-Based Safe And Efficient Behavior Planning For Connected Autonomous Vehicles. CoRR abs/2302.04321 (2023) - 2022
- [j8]Jiangce Chen
, Horea T. Ilies, Caiwen Ding:
Graph-Based Shape Analysis for Heterogeneous Geometric Datasets: Similarity, Retrieval and Substructure Matching. Comput. Aided Des. 143: 103125 (2022) - [c69]Shaoyi Huang, Dongkuan Xu, Ian En-Hsu Yen, Yijue Wang, Sung-En Chang, Bingbing Li, Shiyang Chen, Mimi Xie, Sanguthevar Rajasekaran, Hang Liu, Caiwen Ding:
Sparse Progressive Distillation: Resolving Overfitting under Pretrain-and-Finetune Paradigm. ACL (1) 2022: 190-200 - [c68]Yijue Wang, Nuo Xu, Shaoyi Huang, Kaleel Mahmood, Dan Guo, Caiwen Ding, Wujie Wen, Sanguthevar Rajasekaran:
Analyzing and Defending against Membership Inference Attacks in Natural Language Processing Classification. Big Data 2022: 5823-5832 - [c67]Bingyu Liu, Rujia Wang, Zhongjie Ba, Shanglin Zhou, Caiwen Ding, Yuan Hong:
Poster: Cryptographic Inferences for Video Deep Neural Networks. CCS 2022: 3395-3397 - [c66]Hongwu Peng, Shaoyi Huang, Shiyang Chen, Bingbing Li, Tong Geng, Ang Li, Weiwen Jiang, Wujie Wen, Jinbo Bi, Hang Liu, Caiwen Ding:
A length adaptive algorithm-hardware co-design of transformer on FPGA through sparse attention and dynamic pipelining. DAC 2022: 1135-1140 - [c65]Sahidul Islam
, Jieren Deng, Shanglin Zhou, Chen Pan, Caiwen Ding, Mimi Xie:
Enabling Fast Deep Learning on Tiny Energy-Harvesting IoT Devices. DATE 2022: 921-926 - [c64]Sahidul Islam
, Shanglin Zhou, Ran Ran, Yufang Jin, Wujie Wen, Caiwen Ding, Mimi Xie:
EVE: Environmental Adaptive Neural Network Models for Low-Power Energy Harvesting System. ICCAD 2022: 35 - [c63]Yifan Gong, Zheng Zhan, Pu Zhao
, Yushu Wu, Chao Wu, Caiwen Ding, Weiwen Jiang, Minghai Qin, Yanzhi Wang:
All-in-One: A Highly Representative DNN Pruning Framework for Edge Devices with Dynamic Power Management. ICCAD 2022: 133 - [c62]Yijue Wang, Jieren Deng, Dan Guo, Chenghong Wang, Xianrui Meng, Hang Liu, Chao Shang, Binghui Wang, Qin Cao, Caiwen Ding, Sanguthevar Rajasekaran:
Variance of the Gradient Also Matters: Privacy Leakage from Gradients. IJCNN 2022: 1-8 - [c61]Md. Oli-Uz-Zaman, Saleh Ahmad Khan, Geng Yuan, Yanzhi Wang, Zhiheng Liao, Jingyan Fu, Caiwen Ding, Jinhui Wang:
Reliability Improvement in RRAM-based DNN for Edge Computing. ISCAS 2022: 581-585 - [c60]Shaoyi Huang, Ning Liu
, Yueying Liang, Hongwu Peng, Hongjia Li, Dongkuan Xu, Mimi Xie, Caiwen Ding:
An Automatic and Efficient BERT Pruning for Edge AI Systems. ISQED 2022: 1-6 - [c59]Wei Wei, Sahidul Islam
, Jishnu Banerjee, Shanglin Zhou, Chen Pan, Caiwen Ding, Mimi Xie:
An Intermittent OTA Approach to Update the DL Weights on Energy Harvesting Devices. ISQED 2022: 1-6 - [c58]Samuel Alexander Stein, Betis Baheri, Daniel Chen, Ying Mao, Qiang Guan, Ang Li, Shuai Xu, Caiwen Ding:
QuClassi: A Hybrid Deep Neural Network Architecture based on Quantum State Fidelity. MLSys 2022 - [i55]Jieren Deng, Chenghong Wang, Xianrui Meng, Yijue Wang, Ji Li, Sheng Lin, Shuo Han, Fei Miao, Sanguthevar Rajasekaran, Caiwen Ding:
A Secure and Efficient Federated Learning Framework for NLP. CoRR abs/2201.11934 (2022) - [i54]Shaoyi Huang, Ning Liu, Yueying Liang, Hongwu Peng, Hongjia Li, Dongkuan Xu, Mimi Xie, Caiwen Ding:
An Automatic and Efficient BERT Pruning for Edge AI Systems. CoRR abs/2206.10461 (2022) - [i53]Sahidul Islam
, Shanglin Zhou, Ran Ran, Yufang Jin, Wujie Wen, Caiwen Ding, Mimi Xie:
EVE: Environmental Adaptive Neural Network Models for Low-power Energy Harvesting System. CoRR abs/2207.09258 (2022) - [i52]Hongwu Peng, Shaoyi Huang, Shiyang Chen, Bingbing Li, Tong Geng, Ang Li, Weiwen Jiang, Wujie Wen, Jinbo Bi, Hang Liu, Caiwen Ding:
A Length Adaptive Algorithm-Hardware Co-design of Transformer on FPGA Through Sparse Attention and Dynamic Pipelining. CoRR abs/2208.03646 (2022) - [i51]Nuo Xu, Kaleel Mahmood, Haowen Fang, Ethan Rathbun, Caiwen Ding, Wujie Wen:
Securing the Spike: On the Transferabilty and Security of Spiking Neural Networks to Adversarial Examples. CoRR abs/2209.03358 (2022) - [i50]Hongwu Peng, Deniz Gurevin, Shaoyi Huang, Tong Geng, Weiwen Jiang, Omer Khan, Caiwen Ding:
Towards Sparsification of Graph Neural Networks. CoRR abs/2209.04766 (2022) - [i49]Sanbao Su, Yiming Li, Sihong He, Songyang Han, Chen Feng, Caiwen Ding, Fei Miao:
Uncertainty Quantification of Collaborative Detection for Self-Driving. CoRR abs/2209.08162 (2022) - [i48]Deniz Gurevin, Mohsin Shan, Tong Geng, Weiwen Jiang, Caiwen Ding, Omer Khan:
Towards Real-Time Temporal Graph Learning. CoRR abs/2210.04114 (2022) - [i47]Caiwu Ding, Hongwu Peng, Lu Lu, Caiwen Ding:
Aerial Manipulation Using a Novel Unmanned Aerial Vehicle Cyber-Physical System. CoRR abs/2210.15632 (2022) - [i46]Bin Lei, Shaoyi Huang, Caiwen Ding, Monika Filipovska:
Efficient Traffic State Forecasting using Spatio-Temporal Network Dependencies: A Sparse Graph Neural Network Approach. CoRR abs/2211.03033 (2022) - [i45]Shengkun Tang, Yaqing Wang, Zhenglun Kong, Tianchi Zhang, Yao Li, Caiwen Ding, Yanzhi Wang, Yi Liang, Dongkuan Xu:
You Need Multiple Exiting: Dynamic Early Exiting for Accelerating Unified Vision Language Model. CoRR abs/2211.11152 (2022) - [i44]Ethan Rathbun, Kaleel Mahmood, Sohaib Ahmad, Caiwen Ding, Marten van Dijk:
Game Theoretic Mixed Experts for Combinational Adversarial Machine Learning. CoRR abs/2211.14669 (2022) - [i43]Shaoyi Huang, Bowen Lei, Dongkuan Xu, Hongwu Peng, Yue Sun, Mimi Xie, Caiwen Ding:
Dynamic Sparse Training via Balancing the Exploration-Exploitation Trade-off. CoRR abs/2211.16667 (2022) - [i42]Yifan Gong, Zheng Zhan, Pu Zhao
, Yushu Wu, Chao Wu, Caiwen Ding, Weiwen Jiang, Minghai Qin, Yanzhi Wang:
All-in-One: A Highly Representative DNN Pruning Framework for Edge Devices with Dynamic Power Management. CoRR abs/2212.05122 (2022) - [i41]Lei Zhang, Jie Zhang, Bowen Lei, Subhabrata Mukherjee, Xiang Pan, Bo Zhao, Caiwen Ding, Yao Li, Dongkuan Xu:
Accelerating Dataset Distillation via Model Augmentation. CoRR abs/2212.06152 (2022) - 2021
- [j7]Caiwu Ding
, Lu Lu
, Cong Wang, Caiwen Ding:
Design, Sensing, and Control of a Novel UAV Platform for Aerial Drilling and Screwing. IEEE Robotics Autom. Lett. 6(2): 3176-3183 (2021) - [j6]Santosh Pandey, Zhibin Wang, Sheng Zhong, Chen Tian, Bolong Zheng, Xiaoye S. Li, Lingda Li, Adolfy Hoisie, Caiwen Ding, Dong Li, Hang Liu:
Trust: Triangle Counting Reloaded on GPUs. IEEE Trans. Parallel Distributed Syst. 32(11): 2646-2660 (2021) - [c57]Hongwu Peng, Shanglin Zhou, Scott Weitze, Jiaxin Li, Sahidul Islam
, Tong Geng, Ang Li, Wei Zhang, Minghu Song, Mimi Xie, Hang Liu, Caiwen Ding:
Binary Complex Neural Network Acceleration on FPGA : (Invited Paper). ASAP 2021: 85-92 - [c56]Tianyun Zhang, Xiaolong Ma, Zheng Zhan, Shanglin Zhou, Caiwen Ding, Makan Fardad, Yanzhi Wang:
A Unified DNN Weight Pruning Framework Using Reweighted Optimization Methods. DAC 2021: 493-498 - [c55]Yuhong Song, Weiwen Jiang, Bingbing Li, Panjie Qi, Qingfeng Zhuge, Edwin Hsing-Mean Sha, Sakyasingha Dasgupta, Yiyu Shi, Caiwen Ding:
Dancing along Battery: Enabling Transformer with Run-time Reconfigurability on Mobile Devices. DAC 2021: 1003-1008 - [c54]Geng Yuan, Payman Behnam, Yuxuan Cai, Ali Shafiee, Jingyan Fu, Zhiheng Liao, Zhengang Li, Xiaolong Ma, Jieren Deng, Jinhui Wang, Mahdi Nazm Bojnordi, Yanzhi Wang, Caiwen Ding:
TinyADC: Peripheral Circuit-aware Weight Pruning Framework for Mixed-signal DNN Accelerators. DATE 2021: 926-931 - [c53]Jieren Deng, Yijue Wang, Ji Li, Chenghong Wang, Chao Shang, Hang Liu, Sanguthevar Rajasekaran, Caiwen Ding:
TAG: Gradient Attack on Transformer-based Language Models. EMNLP (Findings) 2021: 3600-3610 - [c52]Chenghong Wang, Jieren Deng, Xianrui Meng, Yijue Wang, Ji Li, Sheng Lin, Shuo Han, Fei Miao, Sanguthevar Rajasekaran, Caiwen Ding:
A Secure and Efficient Federated Learning Framework for NLP. EMNLP (1) 2021: 7676-7682 - [c51]Shaoyi Huang, Shiyang Chen, Hongwu Peng, Daniel Manu, Zhenglun Kong, Geng Yuan, Lei Yang, Shusen Wang, Hang Liu, Caiwen Ding:
HMC-TRAN: A Tensor-core Inspired Hierarchical Model Compression for Transformer-based DNNs on GPU. ACM Great Lakes Symposium on VLSI 2021: 169-174 - [c50]Daniel Manu, Shaoyi Huang, Caiwen Ding, Lei Yang:
Co-Exploration of Graph Neural Network and Network-on-Chip Design Using AutoML. ACM Great Lakes Symposium on VLSI 2021: 175-180 - [c49]Daniel Manu, Yi Sheng, Junhuan Yang, Jieren Deng, Tong Geng, Ang Li, Caiwen Ding, Weiwen Jiang, Lei Yang:
FL-DISCO: Federated Generative Adversarial Network for Graph-based Molecule Drug Discovery: Special Session Paper. ICCAD 2021: 1-7 - [c48]Hongwu Peng, Shiyang Chen, Zhepeng Wang, Junhuan Yang, Scott A. Weitze, Tong Geng, Ang Li, Jinbo Bi, Minghu Song, Weiwen Jiang, Hang Liu, Caiwen Ding:
Optimizing FPGA-based Accelerator Design for Large-Scale Molecular Similarity Search (Special Session Paper). ICCAD 2021: 1-7 - [c47]Zhepeng Wang, Zhiding Liang
, Shanglin Zhou, Caiwen Ding, Yiyu Shi, Weiwen Jiang:
Exploration of Quantum Neural Architecture by Mixing Quantum Neuron Designs: (Invited Paper). ICCAD 2021: 1-7 - [c46]Deniz Gurevin, Mikhail A. Bragin, Caiwen Ding, Shanglin Zhou, Lynn Pepin, Bingbing Li, Fei Miao:
Enabling Retrain-free Deep Neural Network Pruning Using Surrogate Lagrangian Relaxation. IJCAI 2021: 2497-2504 - [c45]Yijue Wang, Chenghong Wang, Zigeng Wang, Shanglin Zhou, Hang Liu, Jinbo Bi, Caiwen Ding, Sanguthevar Rajasekaran:
Against Membership Inference Attack: Pruning is All You Need. IJCAI 2021: 3141-3147 - [c44]Wei Niu, Zhenglun Kong, Geng Yuan, Weiwen Jiang, Jiexiong Guan, Caiwen Ding, Pu Zhao, Sijia Liu, Bin Ren, Yanzhi Wang:
A Compression-Compilation Framework for On-mobile Real-time BERT Applications. IJCAI 2021: 5000-5003 - [c43]Geng Yuan, Payman Behnam, Zhengang Li, Ali Shafiee, Sheng Lin, Xiaolong Ma, Hang Liu, Xuehai Qian, Mahdi Nazm Bojnordi, Yanzhi Wang, Caiwen Ding:
FORMS: Fine-grained Polarized ReRAM-based In-situ Computation for Mixed-signal DNN Accelerator. ISCA 2021: 265-278 - [c42]Shanglin Zhou, Mimi Xie, Yufang Jin, Fei Miao, Caiwen Ding:
An End-to-end Multi-task Object Detection using Embedded GPU in Autonomous Driving. ISQED 2021: 122-128 - [c41]Hongwu Peng, Shaoyi Huang, Tong Geng, Ang Li, Weiwen Jiang, Hang Liu, Shusen Wang, Caiwen Ding:
Accelerating Transformer-based Deep Learning Models on FPGAs using Column Balanced Block Pruning. ISQED 2021: 142-148 - [c40]Shiyang Chen, Shaoyi Huang, Santosh Pandey, Bingbing Li, Guang R. Gao, Long Zheng, Caiwen Ding, Hang Liu:
E.T.: re-thinking self-attention for transformer models on GPUs. SC 2021: 25 - [c39]Anil Gaihre, Da Zheng, Scott Weitze, Lingda Li, Shuaiwen Leon Song, Caiwen Ding, Xiaoye S. Li, Hang Liu:
Dr. Top-k: delegate-centric Top-k on GPUs. SC 2021: 39 - [i40]Yuhong Song, Weiwen Jiang, Bingbing Li, Panjie Qi, Qingfeng Zhuge, Edwin Hsing-Mean Sha, Sakyasingha Dasgupta, Yiyu Shi, Caiwen Ding:
Dancing along Battery: Enabling Transformer with Run-time Reconfigurability on Mobile Devices. CoRR abs/2102.06336 (2021) - [i39]Jieren Deng, Yijue Wang, Ji Li, Chao Shang, Hang Liu, Sanguthevar Rajasekaran, Caiwen Ding:
TAG: Transformer Attack from Gradient. CoRR abs/2103.06819 (2021) - [i38]Santosh Pandey, Zhibin Wang, Sheng Zhong, Chen Tian, Bolong Zheng, Xiaoye S. Li, Lingda Li, Adolfy Hoisie, Caiwen Ding, Dong Li, Hang Liu:
TRUST: Triangle Counting Reloaded on GPUs. CoRR abs/2103.08053 (2021) - [i37]Wei Niu, Zhenglun Kong, Geng Yuan, Weiwen Jiang, Jiexiong Guan, Caiwen Ding, Pu Zhao, Sijia Liu, Bin Ren, Yanzhi Wang:
A Compression-Compilation Framework for On-mobile Real-time BERT Applications. CoRR abs/2106.00526 (2021) - [i36]Geng Yuan, Payman Behnam, Zhengang Li, Ali Shafiee, Sheng Lin, Xiaolong Ma, Hang Liu, Xuehai Qian, Mahdi Nazm Bojnordi, Yanzhi Wang, Caiwen Ding:
FORMS: Fine-grained Polarized ReRAM-based In-situ Computation for Mixed-signal DNN Accelerator. CoRR abs/2106.09144 (2021) - [i35]Hongwu Peng, Shanglin Zhou, Scott Weitze, Jiaxin Li, Sahidul Islam, Tong Geng, Ang Li, Wei Zhang, Minghu Song, Mimi Xie, Hang Liu, Caiwen Ding:
Binary Complex Neural Network Acceleration on FPGA. CoRR abs/2108.04811 (2021) - [i34]Zhepeng Wang, Zhiding Liang, Shanglin Zhou, Caiwen Ding, Jinjun Xiong, Yiyu Shi, Weiwen Jiang:
Exploration of Quantum Neural Architecture by Mixing Quantum Neuron Designs. CoRR abs/2109.03806 (2021) - [i33]Hongwu Peng, Shiyang Chen, Zhepeng Wang, Junhuan Yang, Scott A. Weitze, Tong Geng, Ang Li, Jinbo Bi, Minghu Song, Weiwen Jiang, Hang Liu, Caiwen Ding:
Optimizing FPGA-based Accelerator Design for Large-Scale Molecular Similarity Search. CoRR abs/2109.06355 (2021) - [i32]Anil Gaihre, Da Zheng, Scott Weitze, Lingda Li, Shuaiwen Leon Song, Caiwen Ding, Xiaoye S. Li, Hang Liu:
Dr. Top-k: Delegate-Centric Top-k on GPUs. CoRR abs/2109.08219 (2021) - [i31]Shaoyi Huang, Dongkuan Xu, Ian En-Hsu Yen, Sung-En Chang, Bingbing Li, Shiyang Chen, Mimi Xie, Hang Liu, Caiwen Ding:
Sparse Progressive Distillation: Resolving Overfitting under Pretrain-and-Finetune Paradigm. CoRR abs/2110.08190 (2021) - [i30]Bingbing Li, Hongwu Peng, Rajat Sainju, Junhuan Yang, Lei Yang, Yueying Liang, Weiwen Jiang, Binghui Wang, Hang Liu, Caiwen Ding:
Detecting Gender Bias in Transformer-based Models: A Case Study on BERT. CoRR abs/2110.15733 (2021) - [i29]Sahidul Islam, Jieren Deng, Shanglin Zhou, Chen Pan, Caiwen Ding, Mimi Xie:
Enabling Super-Fast Deep Learning on Tiny Energy-Harvesting IoT Devices. CoRR abs/2111.14051 (2021) - 2020
- [c38]Xiaolong Ma, Geng Yuan, Sheng Lin, Caiwen Ding, Fuxun Yu, Tao Liu, Wujie Wen, Xiang Chen, Yanzhi Wang:
Tiny but Accurate: A Pruned, Quantized and Optimized Memristor Crossbar Framework for Ultra Efficient DNN Implementation. ASP-DAC 2020: 301-306 - [c37]Runbin Shi, Yuhao Ding, Xuechao Wei, He Li, Hang Liu, Hayden Kwok-Hay So
, Caiwen Ding:
FTDL: A Tailored FPGA-Overlay for Deep Learning with High Scalability. DAC 2020: 1-6 - [c36]Bingbing Li, Zhenglun Kong, Tianyun Zhang, Ji Li, Zhengang Li, Hang Liu, Caiwen Ding:
Efficient Transformer-based Large Scale Language Representations using Hardware-friendly Block Structured Pruning. EMNLP (Findings) 2020: 3187-3199 - [c35]Runbin Shi, Yuhao Ding, Xuechao Wei, Hang Liu, Hayden Kwok-Hay So
, Caiwen Ding:
FTDL: An FPGA-tailored Architecture for Deep Learning Systems. FPGA 2020: 320 - [c34]Yifan Gong, Zheng Zhan, Zhengang Li, Wei Niu, Xiaolong Ma, Wenhao Wang
, Bin Ren, Caiwen Ding, Xue Lin, Xiaolin Xu, Yanzhi Wang:
A Privacy-Preserving-Oriented DNN Pruning and Mobile Acceleration Framework. ACM Great Lakes Symposium on VLSI 2020: 119-124 - [c33]Kaidi Xu, Sijia Liu, Pin-Yu Chen, Mengshu Sun, Caiwen Ding, Bhavya Kailkhura, Xue Lin:
Towards an Efficient and General Framework of Robust Training for Graph Neural Networks. ICASSP 2020: 8479-8483 - [c32]Bingbing Li, Santosh Pandey, Haowen Fang, Yanjun Lyv, Ji Li, Jieyang Chen, Mimi Xie, Lipeng Wan, Hang Liu, Caiwen Ding:
FTRANS: energy-efficient acceleration of transformers using FPGA. ISLPED 2020: 175-180 - [c31]Shanglin Zhou, Bingbing Li, Caiwu Ding, Lu Lu, Caiwen Ding:
An Efficient Deep Reinforcement Learning Framework for UAVs. ISQED 2020: 323-328 - [c30]Geng Yuan, Xiaolong Ma, Sheng Lin, Zhengang Li, Jieren Deng, Caiwen Ding:
A DNN Compression Framework for SOT-MRAM-based Processing-In-Memory Engine. SoCC 2020: 37-42 - [i28]Kaidi Xu, Sijia Liu, Pin-Yu Chen, Mengshu Sun, Caiwen Ding, Bhavya Kailkhura, Xue Lin:
Towards an Efficient and General Framework of Robust Training for Graph Neural Networks. CoRR abs/2002.10947 (2020) - [i27]Tianyun Zhang, Xiaolong Ma, Zheng Zhan, Shanglin Zhou, Minghai Qin, Fei Sun, Yen-Kuang Chen, Caiwen Ding, Makan Fardad, Yanzhi Wang:
A Unified DNN Weight Compression Framework Using Reweighted Optimization Methods. CoRR abs/2004.05531 (2020) - [i26]Bingbing Li, Santosh Pandey, Haowen Fang, Yanjun Lyv, Ji Li, Jieyang Chen, Mimi Xie, Lipeng Wan, Hang Liu, Caiwen Ding:
FTRANS: Energy-Efficient Acceleration of Transformers using FPGA. CoRR abs/2007.08563 (2020) - [i25]Yijue Wang, Chenghong Wang, Zigeng Wang, Shanglin Zhou, Hang Liu, Jinbo Bi, Caiwen Ding, Sanguthevar Rajasekaran:
MCMIA: Model Compression Against Membership Inference Attack in Deep Neural Networks. CoRR abs/2008.13578 (2020) - [i24]Sheng Lin, Chenghong Wang, Hongjia Li, Jieren Deng, Yanzhi Wang, Caiwen Ding:
ESMFL: Efficient and Secure Models for Federated Learning. CoRR abs/2009.01867 (2020) - [i23]Yijue Wang, Jieren Deng, Dan Guo, Chenghong Wang, Xianrui Meng, Hang Liu, Caiwen Ding, Sanguthevar Rajasekaran:
SAPAG: A Self-Adaptive Privacy Attack From Gradients. CoRR abs/2009.06228 (2020) - [i22]Wei Niu, Zhenglun Kong, Geng Yuan, Weiwen Jiang, Jiexiong Guan, Caiwen Ding, Pu Zhao, Sijia Liu, Bin Ren, Yanzhi Wang:
Achieving Real-Time Execution of Transformer-based Large-scale Models on Mobile with Compiler-aware Neural Architecture Optimization. CoRR abs/2009.06823 (2020) - [i21]Bingbing Li, Zhenglun Kong, Tianyun Zhang, Ji Li, Zhengang Li, Hang Liu, Caiwen Ding:
Efficient Transformer-based Large Scale Language Representations using Hardware-friendly Block Structured Pruning. CoRR abs/2009.08065 (2020) - [i20]Deniz Gurevin, Shanglin Zhou, Lynn Pepin, Bingbing Li, Mikhail A. Bragin, Caiwen Ding, Fei Miao:
A Surrogate Lagrangian Relaxation-based Model Compression for Deep Neural Networks. CoRR abs/2012.10079 (2020)
2010 – 2019
- 2019
- [j5]Ji Li, Zihao Yuan, Zhe Li, Ao Ren, Caiwen Ding
, Jeffrey Draper, Shahin Nazarian, Qinru Qiu, Bo Yuan, Yanzhi Wang:
Normalization and dropout for stochastic computing-based deep convolutional neural networks. Integr. 65: 395-403 (2019) - [j4]Zhe Li
, Ji Li
, Ao Ren, Ruizhe Cai, Caiwen Ding
, Xuehai Qian, Jeffrey Draper, Bo Yuan
, Jian Tang
, Qinru Qiu, Yanzhi Wang:
HEIF: Highly Efficient Stochastic Computing-Based Inference Framework for Deep Neural Networks. IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 38(8): 1543-1556 (2019) - [c29]Caiwen Ding
, Shuo Wang, Ning Liu
, Kaidi Xu, Yanzhi Wang, Yun Liang:
REQ-YOLO: A Resource-Aware, Efficient Quantization Framework for Object Detection on FPGAs. FPGA 2019: 33-42 - [c28]Ruizhe Cai, Olivia Chen, Ao Ren, Ning Liu, Caiwen Ding, Nobuyuki Yoshikawa, Yanzhi Wang:
A Majority Logic Synthesis Framework for Adiabatic Quantum-Flux-Parametron Superconducting Circuits. ACM Great Lakes Symposium on VLSI 2019: 189-194 - [c27]Zhe Li, Caiwen Ding
, Siyue Wang, Wujie Wen, Youwei Zhuo, Chang Liu, Qinru Qiu, Wenyao Xu, Xue Lin, Xuehai Qian, Yanzhi Wang:
E-RNN: Design Optimization for Efficient Recurrent Neural Networks in FPGAs. HPCA 2019: 69-80 - [c26]Ruizhe Cai, Ao Ren, Olivia Chen, Ning Liu, Caiwen Ding
, Xuehai Qian, Jie Han, Wenhui Luo, Nobuyuki Yoshikawa, Yanzhi Wang:
A stochastic-computing based deep learning framework using adiabatic quantum-flux-parametron superconducting technology. ISCA 2019: 567-578 - [c25]Geng Yuan, Xiaolong Ma, Caiwen Ding, Sheng Lin, Tianyun Zhang, Zeinab S. Jalali, Yilong Zhao, Li Jiang, Sucheta Soundarajan, Yanzhi Wang:
An Ultra-Efficient Memristor-Based DNN Framework with Structured Weight Pruning and Quantization Using ADMM. ISLPED 2019: 1-6 - [c24]Hongjia Li, Sheng Lin, Ning Liu, Caiwen Ding, Yanzhi Wang:
Deep Compressed Pneumonia Detection for Low-Power Embedded Devices. LABELS/HAL-MICCAI/CuRIOUS@MICCAI 2019: 89-97 - [i19]Ruizhe Cai, Ao Ren, Olivia Chen, Ning Liu, Caiwen Ding, Xuehai Qian, Jie Han, Wenhui Luo, Nobuyuki Yoshikawa, Yanzhi Wang:
A Stochastic-Computing based Deep Learning Framework using Adiabatic Quantum-Flux-Parametron SuperconductingTechnology. CoRR abs/1907.09077 (2019) - [i18]Xiaolong Ma, Geng Yuan, Sheng Lin, Caiwen Ding, Fuxun Yu, Tao Liu, Wujie Wen, Xiang Chen, Yanzhi Wang:
Tiny but Accurate: A Pruned, Quantized and Optimized Memristor Crossbar Framework for Ultra Efficient DNN Implementation. CoRR abs/1908.10017 (2019) - [i17]Geng Yuan, Xiaolong Ma, Caiwen Ding, Sheng Lin, Tianyun Zhang, Zeinab S. Jalali, Yilong Zhao, Li Jiang, Sucheta Soundarajan, Yanzhi Wang:
An Ultra-Efficient Memristor-Based DNN Framework with Structured Weight Pruning and Quantization Using ADMM. CoRR abs/1908.11691 (2019) - [i16]Caiwen Ding, Shuo Wang, Ning Liu, Kaidi Xu, Yanzhi Wang, Yun Liang:
REQ-YOLO: A Resource-Aware, Efficient Quantization Framework for Object Detection on FPGAs. CoRR abs/1909.13396 (2019) - [i15]Hongjia Li, Sheng Lin, Ning Liu, Caiwen Ding, Yanzhi Wang:
Deep Compressed Pneumonia Detection for Low-Power Embedded Devices. CoRR abs/1911.02007 (2019) - [i14]Geng Yuan, Xiaolong Ma, Sheng Lin, Zhengang Li, Caiwen Ding:
A SOT-MRAM-based Processing-In-Memory Engine for Highly Compressed DNN Implementation. CoRR abs/1912.05416 (2019) - 2018
- [j3]Caiwen Ding
, Hongjia Li, Weiwei Zheng
, Yanzhi Wang, Xue Lin:
Reconfigurable Photovoltaic Systems for Electric Vehicles. IEEE Des. Test 35(6): 37-43 (2018) - [j2]Jaemin Kim, Donkyu Baek
, Caiwen Ding
, Sheng Lin, Donghwa Shin
, Xue Lin, Yanzhi Wang, Youngjin Cho, Sang Hyun Park, Naehyuck Chang
:
Dynamic Reconfiguration of Thermoelectric Generators for Vehicle Radiators Energy Harvesting Under Location-Dependent Temperature Variations. IEEE Trans. Very Large Scale Integr. Syst. 26(7): 1241-1253 (2018) - [c23]Yanzhi Wang, Caiwen Ding, Zhe Li, Geng Yuan, Siyu Liao, Xiaolong Ma, Bo Yuan, Xuehai Qian, Jian Tang, Qinru Qiu, Xue Lin:
Towards Ultra-High Performance and Energy Efficiency of Deep Learning Systems: An Algorithm-Hardware Co-Optimization Framework. AAAI 2018: 4235-4243 - [c22]Ruizhe Cai, Ao Ren, Ning Liu, Caiwen Ding
, Luhao Wang, Xuehai Qian, Massoud Pedram, Yanzhi Wang:
VIBNN: Hardware Acceleration of Bayesian Neural Networks. ASPLOS 2018: 476-488 - [c21]Hanchen Yang, Feiyang Kang, Caiwen Ding
, Ji Li, Jaemin Kim, Donkyu Baek, Shahin Nazarian, Xue Lin, Paul Bogdan, Naehyuck Chang:
Prediction-based fast thermoelectric generator reconfiguration for energy harvesting from vehicle radiators. DATE 2018: 877-880 - [c20]Sheng Lin, Ning Liu
, Mahdi Nazemi, Hongjia Li, Caiwen Ding
, Yanzhi Wang, Massoud Pedram:
FFT-based deep learning deployment in embedded systems. DATE 2018: 1045-1050 - [c19]Shuo Wang, Zhe Li, Caiwen Ding
, Bo Yuan, Qinru Qiu, Yanzhi Wang, Yun Liang:
C-LSTM: Enabling Efficient LSTM using Structured Compression Techniques on FPGAs. FPGA 2018: 11-20 - [c18]Caiwen Ding
, Ao Ren, Geng Yuan, Xiaolong Ma, Jiayu Li, Ning Liu, Bo Yuan, Yanzhi Wang:
Structured Weight Matrices-Based Hardware Accelerators in Deep Neural Networks: FPGAs and ASICs. ACM Great Lakes Symposium on VLSI 2018: 353-358 - [c17]Zhe Li, Shuo Wang, Caiwen Ding, Qinru Qiu, Yanzhi Wang, Yun Liang:
Efficient Recurrent Neural Networks using Structured Matrices in FPGAs. ICLR (Workshop) 2018 - [c16]Ziyi Zhao, Krittaphat Pugdeethosapol, Sheng Lin, Zhe Li, Caiwen Ding
, Yanzhi Wang, Qinru Qiu:
Learning Topics Using Semantic Locality. ICPR 2018: 3710-3715 - [c15]Zhe Li, Ji Li, Ao Ren, Caiwen Ding
, Jeffrey Draper, Qinru Qiu, Bo Yuan, Yanzhi Wang:
Towards Budget-Driven Hardware Optimization for Deep Convolutional Neural Networks Using Stochastic Computing. ISVLSI 2018: 28-33 - [c14]