


Остановите войну!
for scientists:


default search action
Zhuoran Yang
Person information

Refine list

refinements active!
zoomed in on ?? of ?? records
view refined list in
export refined list as
showing all ?? records
2020 – today
- 2022
- [c81]Zehao Dou, Zhuoran Yang, Zhaoran Wang, Simon S. Du:
Gap-Dependent Bounds for Two-Player Markov Games. AISTATS 2022: 432-455 - [c80]Chenjia Bai, Lingxiao Wang, Zhuoran Yang, Zhi-Hong Deng, Animesh Garg, Peng Liu, Zhaoran Wang:
Pessimistic Bootstrapping for Uncertainty-Driven Offline Reinforcement Learning. ICLR 2022 - [c79]Baihe Huang, Jason D. Lee, Zhaoran Wang, Zhuoran Yang:
Towards General Function Approximation in Zero-Sum Markov Games. ICLR 2022 - [c78]Zhi Zhang, Zhuoran Yang, Han Liu, Pratap Tokekar, Furong Huang:
Reinforcement Learning under a Multi-agent Predictive State Representation Model: Method and Theory. ICLR 2022 - [c77]Qi Cai, Zhuoran Yang, Zhaoran Wang:
Reinforcement Learning from Partial Observation: Linear Function Approximation with Provable Sample Efficiency. ICML 2022: 2485-2522 - [c76]Siyu Chen, Donglin Yang, Jiayang Li, Senmiao Wang, Zhuoran Yang, Zhaoran Wang:
Adaptive Model Design for Markov Decision Process. ICML 2022: 3679-3700 - [c75]Xiaoyu Chen, Han Zhong, Zhuoran Yang, Zhaoran Wang, Liwei Wang:
Human-in-the-loop: Provably Efficient Preference-based Reinforcement Learning with General Function Approximation. ICML 2022: 3773-3793 - [c74]Hongyi Guo, Qi Cai, Yufeng Zhang, Zhuoran Yang, Zhaoran Wang:
Provably Efficient Offline Reinforcement Learning for Partially Observable Markov Decision Processes. ICML 2022: 8016-8038 - [c73]Zhihan Liu, Miao Lu, Zhaoran Wang, Michael I. Jordan, Zhuoran Yang:
Welfare Maximization in Competitive Equilibrium: Reinforcement Learning for Markov Exchange Economy. ICML 2022: 13870-13911 - [c72]Zhihan Liu, Yufeng Zhang, Zuyue Fu, Zhuoran Yang, Zhaoran Wang:
Learning from Demonstration: Provably Efficient Adversarial Policy Imitation with Linear Function Approximation. ICML 2022: 14094-14138 - [c71]Boxiang Lyu, Zhaoran Wang, Mladen Kolar, Zhuoran Yang:
Pessimism meets VCG: Learning Dynamic Mechanism Design via Offline Reinforcement Learning. ICML 2022: 14601-14638 - [c70]Shuang Qiu, Lingxiao Wang, Chenjia Bai, Zhuoran Yang, Zhaoran Wang:
Contrastive UCB: Provably Efficient Contrastive Self-Supervised Learning in Online Reinforcement Learning. ICML 2022: 18168-18210 - [c69]Han Zhong, Wei Xiong, Jiyuan Tan, Liwei Wang, Tong Zhang, Zhaoran Wang, Zhuoran Yang:
Pessimistic Minimax Value Iteration: Provably Efficient Equilibrium Learning from Offline Datasets. ICML 2022: 27117-27142 - [c68]Shichao Xu, Yangyang Fu, Yixuan Wang, Zhuoran Yang, Zheng O'Neill, Zhaoran Wang, Qi Zhu:
Accelerate online reinforcement learning for building HVAC control with heterogeneous expert guidances. BuildSys@SenSys 2022: 89-98 - [c67]Jibang Wu, Zixuan Zhang, Zhe Feng, Zhaoran Wang, Zhuoran Yang, Michael I. Jordan, Haifeng Xu:
Sequential Information Design: Markov Persuasion Process and Its Efficient Reinforcement Learning. EC 2022: 471-472 - [i96]Yixuan Wang, Chao Huang, Zhaoran Wang, Zhuoran Yang, Qi Zhu:
Joint Differentiable Optimization and Verification for Certified Reinforcement Learning. CoRR abs/2201.12243 (2022) - [i95]Han Zhong, Wei Xiong, Jiyuan Tan, Liwei Wang, Tong Zhang, Zhaoran Wang, Zhuoran Yang:
Pessimistic Minimax Value Iteration: Provably Efficient Equilibrium Learning from Offline Datasets. CoRR abs/2202.07511 (2022) - [i94]Jibang Wu, Zixuan Zhang, Zhe Feng, Zhaoran Wang, Zhuoran Yang, Michael I. Jordan, Haifeng Xu:
Sequential Information Design: Markov Persuasion Process and Its Efficient Reinforcement Learning. CoRR abs/2202.10678 (2022) - [i93]Chenjia Bai, Lingxiao Wang, Zhuoran Yang, Zhihong Deng, Animesh Garg, Peng Liu, Zhaoran Wang:
Pessimistic Bootstrapping for Uncertainty-Driven Offline Reinforcement Learning. CoRR abs/2202.11566 (2022) - [i92]Boxiang Lyu, Qinglin Meng, Shuang Qiu, Zhaoran Wang, Zhuoran Yang, Michael I. Jordan:
Learning Dynamic Mechanisms in Unknown Environments: A Reinforcement Learning Approach. CoRR abs/2202.12797 (2022) - [i91]Grigoris Velegkas, Zhuoran Yang, Amin Karbasi:
The Best of Both Worlds: Reinforcement Learning with Logarithmic Regret and Policy Switches. CoRR abs/2203.01491 (2022) - [i90]Yifei Min, Tianhao Wang, Ruitu Xu, Zhaoran Wang, Michael I. Jordan, Zhuoran Yang:
Learn to Match with No Regret: Reinforcement Learning in Markov Matching Markets. CoRR abs/2203.03684 (2022) - [i89]Qi Cai, Zhuoran Yang, Zhaoran Wang:
Sample-Efficient Reinforcement Learning for POMDPs with Linear Function Approximations. CoRR abs/2204.09787 (2022) - [i88]Boxiang Lyu, Zhaoran Wang, Mladen Kolar, Zhuoran Yang:
Pessimism meets VCG: Learning Dynamic Mechanism Design via Offline Reinforcement Learning. CoRR abs/2205.02450 (2022) - [i87]Xiaoyu Chen, Han Zhong, Zhuoran Yang, Zhaoran Wang, Liwei Wang:
Human-in-the-loop: Provably Efficient Preference-based Reinforcement Learning with General Function Approximation. CoRR abs/2205.11140 (2022) - [i86]Lingxiao Wang, Qi Cai, Zhuoran Yang, Zhaoran Wang:
Embed to Control Partially Observed Systems: Representation Learning with Provable Sample Efficiency. CoRR abs/2205.13476 (2022) - [i85]Miao Lu, Yifei Min, Zhaoran Wang, Zhuoran Yang:
Pessimism in the Face of Confounders: Provably Efficient Offline Reinforcement Learning in Partially Observable Markov Decision Processes. CoRR abs/2205.13589 (2022) - [i84]Wenhao Zhan, Jason D. Lee, Zhuoran Yang:
Decentralized Optimistic Hyperpolicy Mirror Descent: Provably No-Regret Learning in Markov Games. CoRR abs/2206.01588 (2022) - [i83]Shuang Qiu, Xiaohan Wei, Jieping Ye, Zhaoran Wang, Zhuoran Yang:
Provably Efficient Fictitious Play Policy Optimization for Zero-Sum Markov Games with Structured Transitions. CoRR abs/2207.12463 (2022) - [i82]Shuang Qiu, Lingxiao Wang, Chenjia Bai, Zhuoran Yang, Zhaoran Wang:
Contrastive UCB: Provably Efficient Contrastive Self-Supervised Learning in Online Reinforcement Learning. CoRR abs/2207.14800 (2022) - [i81]Mengxin Yu, Zhuoran Yang, Jianqing Fan:
Strategic Decision-Making in the Presence of Information Asymmetry: Provably Efficient RL with Algorithmic Instruments. CoRR abs/2208.11040 (2022) - [i80]Zuyue Fu, Zhengling Qi, Zhaoran Wang, Zhuoran Yang, Yanxun Xu, Michael R. Kosorok:
Offline Reinforcement Learning with Instrumental Variables in Confounded Markov Decision Processes. CoRR abs/2209.08666 (2022) - [i79]Fengzhuo Zhang, Boyi Liu, Kaixin Wang, Vincent Y. F. Tan, Zhuoran Yang, Zhaoran Wang:
Relational Reasoning via Set Transformers: Provable Efficiency and Applications to MARL. CoRR abs/2209.09845 (2022) - [i78]Yixuan Wang, Simon Sinong Zhan, Ruochen Jiao, Zhilu Wang, Wanxin Jin, Zhuoran Yang, Zhaoran Wang, Chao Huang, Qi Zhu:
Enforcing Hard Constraints with Soft Barriers: Safe Reinforcement Learning in Unknown Stochastic Environments. CoRR abs/2209.15090 (2022) - [i77]Rui Ai, Boxiang Lyu, Zhaoran Wang, Zhuoran Yang, Michael I. Jordan:
A Reinforcement Learning Approach in Multi-Phase Second-Price Auction Design. CoRR abs/2210.10278 (2022) - [i76]Han Zhong, Wei Xiong, Sirui Zheng, Liwei Wang, Zhaoran Wang, Zhuoran Yang, Tong Zhang:
GEC: A Unified Framework for Interactive Decision Making in MDP, POMDP, and Beyond. CoRR abs/2211.01962 (2022) - [i75]Banghua Zhu, Stephen Bates, Zhuoran Yang, Yixin Wang, Jiantao Jiao, Michael I. Jordan:
The Sample Complexity of Online Contract Design. CoRR abs/2211.05732 (2022) - [i74]Ying Jin, Zhimei Ren, Zhuoran Yang, Zhaoran Wang:
Policy learning "without" overlap: Pessimism and generalized empirical Bernstein's inequality. CoRR abs/2212.09900 (2022) - [i73]Zuyue Fu, Zhengling Qi, Zhuoran Yang, Zhaoran Wang, Lan Wang:
Offline Reinforcement Learning for Human-Guided Human-Machine Interaction with Private Information. CoRR abs/2212.12167 (2022) - [i72]Riashat Islam, Samarth Sinha, Homanga Bharadhwaj, Samin Yeasar Arnob, Zhuoran Yang, Animesh Garg, Zhaoran Wang, Lihong Li, Doina Precup:
Offline Policy Optimization in RL with Variance Regularizaton. CoRR abs/2212.14405 (2022) - 2021
- [j10]Liya Fu, Zhuoran Yang, Jun Zhang, Anle Long, Yan Zhou:
Generalized estimating equations for analyzing multivariate survival data. Commun. Stat. Simul. Comput. 50(10): 3060-3068 (2021) - [j9]Liya Fu, Zhuoran Yang, Fengjing Cai, You-Gan Wang
:
Efficient and doubly-robust methods for variable selection and parameter estimation in longitudinal data analysis. Comput. Stat. 36(2): 781-804 (2021) - [j8]Shuang Qiu
, Zhuoran Yang
, Jieping Ye, Zhaoran Wang:
On Finite-Time Convergence of Actor-Critic Algorithm. IEEE J. Sel. Areas Inf. Theory 2(2): 652-664 (2021) - [j7]Kaiqing Zhang
, Zhuoran Yang, Tamer Basar:
Decentralized multi-agent reinforcement learning with networked agents: recent advances. Frontiers Inf. Technol. Electron. Eng. 22(6): 802-814 (2021) - [j6]Kaiqing Zhang
, Zhuoran Yang
, Han Liu
, Tong Zhang
, Tamer Basar
:
Finite-Sample Analysis for Decentralized Batch Multiagent Reinforcement Learning With Networked Agents. IEEE Trans. Autom. Control. 66(12): 5925-5940 (2021) - [c66]Jiaheng Wei, Zuyue Fu, Yang Liu, Xingyu Li, Zhuoran Yang, Zhaoran Wang:
Sample Elicitation. AISTATS 2021: 2692-2700 - [c65]Yufeng Zhang, Zhuoran Yang, Zhaoran Wang:
Provably Efficient Actor-Critic for Risk-Sensitive and Robust Adversarial RL: A Linear-Quadratic Case. AISTATS 2021: 2764-2772 - [c64]Dongsheng Ding, Xiaohan Wei, Zhuoran Yang, Zhaoran Wang, Mihailo R. Jovanovic:
Provably Efficient Safe Exploration via Primal-Dual Policy Optimization. AISTATS 2021: 3304-3312 - [c63]Zuyue Fu, Zhuoran Yang, Zhaoran Wang:
Single-Timescale Actor-Critic Provably Finds Globally Optimal Policy. ICLR 2021 - [c62]Yingjie Fei, Zhuoran Yang, Zhaoran Wang:
Risk-Sensitive Reinforcement Learning with Function Approximation: A Debiasing Approach. ICML 2021: 3198-3207 - [c61]Hongyi Guo, Zuyue Fu, Zhuoran Yang, Zhaoran Wang:
Decentralized Single-Timescale Actor-Critic on Zero-Sum Two-Player Stochastic Games. ICML 2021: 3899-3909 - [c60]Haque Ishfaq, Qiwen Cui, Viet Nguyen, Alex Ayoub, Zhuoran Yang, Zhaoran Wang, Doina Precup, Lin Yang:
Randomized Exploration in Reinforcement Learning with General Value Function Approximation. ICML 2021: 4607-4616 - [c59]Ying Jin, Zhuoran Yang, Zhaoran Wang:
Is Pessimism Provably Efficient for Offline RL? ICML 2021: 5084-5096 - [c58]Lewis Liu, Yufeng Zhang, Zhuoran Yang, Reza Babanezhad, Zhaoran Wang:
Infinite-Dimensional Optimization for Zero-Sum Games via Variational Transport. ICML 2021: 7033-7044 - [c57]Shuang Qiu, Xiaohan Wei, Jieping Ye, Zhaoran Wang, Zhuoran Yang:
Provably Efficient Fictitious Play Policy Optimization for Zero-Sum Markov Games with Structured Transitions. ICML 2021: 8715-8725 - [c56]Shuang Qiu, Jieping Ye, Zhaoran Wang, Zhuoran Yang:
On Reward-Free RL with Kernel and Neural Function Approximations: Single-Agent MDP and Markov Game. ICML 2021: 8737-8747 - [c55]Wesley Suttle, Kaiqing Zhang, Zhuoran Yang, Ji Liu, David Kraemer:
Reinforcement Learning for Cost-Aware Markov Decision Processes. ICML 2021: 9989-9999 - [c54]Weichen Wang, Jiequn Han, Zhuoran Yang, Zhaoran Wang:
Global Convergence of Policy Gradient for Linear-Quadratic Mean-Field Control/Game in Continuous Time. ICML 2021: 10772-10782 - [c53]Qiaomin Xie, Zhuoran Yang, Zhaoran Wang, Andreea Minca:
Learning While Playing in Mean-Field Games: Convergence and Optimality. ICML 2021: 11436-11447 - [c52]Tengyu Xu, Zhuoran Yang, Zhaoran Wang, Yingbin Liang:
Doubly Robust Off-Policy Actor-Critic: Convergence and Optimality. ICML 2021: 11581-11591 - [c51]Jingwei Zhang, Zhuoran Yang, Zhengyuan Zhou, Zhaoran Wang:
Provably Sample Efficient Reinforcement Learning in Competitive Linear Quadratic Systems. L4DC 2021: 597-598 - [c50]Boyi Liu, Qi Cai, Zhuoran Yang, Zhaoran Wang:
BooVI: Provably Efficient Bootstrapped Value Iteration. NeurIPS 2021: 7041-7053 - [c49]Yufeng Zhang, Siyu Chen, Zhuoran Yang, Michael I. Jordan, Zhaoran Wang:
Wasserstein Flow Meets Replicator Dynamics: A Mean-Field Analysis of Representation Learning in Actor-Critic. NeurIPS 2021: 15993-16006 - [c48]Minshuo Chen, Yan Li, Ethan Wang, Zhuoran Yang, Zhaoran Wang, Tuo Zhao:
Pessimism Meets Invariance: Provably Efficient Offline Mean-Field Multi-Agent RL. NeurIPS 2021: 17913-17926 - [c47]Yingjie Fei, Zhuoran Yang, Yudong Chen, Zhaoran Wang:
Exponential Bellman Equation and Improved Regret Bounds for Risk-Sensitive Reinforcement Learning. NeurIPS 2021: 20436-20446 - [c46]Lingxiao Wang, Zhuoran Yang, Zhaoran Wang:
Provably Efficient Causal Reinforcement Learning with Confounded Observational Data. NeurIPS 2021: 21164-21175 - [c45]Runzhe Wu, Yufeng Zhang, Zhuoran Yang, Zhaoran Wang:
Offline Constrained Multi-Objective Reinforcement Learning via Pessimistic Dual Value Iteration. NeurIPS 2021: 25439-25451 - [c44]Prashant Khanduri, Siliang Zeng, Mingyi Hong, Hoi-To Wai, Zhaoran Wang, Zhuoran Yang:
A Near-Optimal Algorithm for Stochastic Bilevel Optimization via Double-Momentum. NeurIPS 2021: 30271-30283 - [i71]Prashant Khanduri, Siliang Zeng, Mingyi Hong, Hoi-To Wai, Zhaoran Wang, Zhuoran Yang:
A Momentum-Assisted Single-Timescale Stochastic Approximation Algorithm for Bilevel Optimization. CoRR abs/2102.07367 (2021) - [i70]Luofeng Liao, Zuyue Fu, Zhuoran Yang, Mladen Kolar, Zhaoran Wang:
Instrumental Variable Value Iteration for Causal Offline Reinforcement Learning. CoRR abs/2102.09907 (2021) - [i69]Tengyu Xu, Zhuoran Yang, Zhaoran Wang, Yingbin Liang:
Doubly Robust Off-Policy Actor-Critic: Convergence and Optimality. CoRR abs/2102.11866 (2021) - [i68]Haque Ishfaq, Qiwen Cui, Viet Nguyen, Alex Ayoub, Zhuoran Yang, Zhaoran Wang, Doina Precup, Lin F. Yang:
Randomized Exploration for Reinforcement Learning with General Value Function Approximation. CoRR abs/2106.07841 (2021) - [i67]Zehao Dou, Zhuoran Yang, Zhaoran Wang, Simon S. Du:
Gap-Dependent Bounds for Two-Player Markov Games. CoRR abs/2107.00685 (2021) - [i66]Tengyu Xu, Zhuoran Yang, Zhaoran Wang, Yingbin Liang:
A Unified Off-Policy Evaluation Approach for General Value Function. CoRR abs/2107.02711 (2021) - [i65]Baihe Huang, Jason D. Lee, Zhaoran Wang, Zhuoran Yang:
Towards General Function Approximation in Zero-Sum Markov Games. CoRR abs/2107.14702 (2021) - [i64]Pratik Ramprasad, Yuantong Li, Zhuoran Yang, Zhaoran Wang, Will Wei Sun, Guang Cheng:
Online Bootstrap Inference For Policy Evaluation in Reinforcement Learning. CoRR abs/2108.03706 (2021) - [i63]Zhihan Liu, Yufeng Zhang, Zuyue Fu, Zhuoran Yang, Zhaoran Wang:
Provably Efficient Generative Adversarial Imitation Learning for Online and Offline Setting with Linear Function Approximation. CoRR abs/2108.08765 (2021) - [i62]Boyi Liu, Jiayang Li, Zhuoran Yang, Hoi-To Wai, Mingyi Hong, Yu Marco Nie, Zhaoran Wang:
Inducing Equilibria via Incentives: Simultaneous Design-and-Play Finds Global Optima. CoRR abs/2110.01212 (2021) - [i61]Han Zhong, Zhuoran Yang, Zhaoran Wang, Csaba Szepesvári:
Optimistic Policy Optimization is Provably Efficient in Non-stationary MDPs. CoRR abs/2110.08984 (2021) - [i60]Shuang Qiu, Jieping Ye, Zhaoran Wang, Zhuoran Yang:
On Reward-Free RL with Kernel and Neural Function Approximations: Single-Agent MDP and Markov Game. CoRR abs/2110.09771 (2021) - [i59]Zhihong Deng, Zuyue Fu, Lingxiao Wang, Zhuoran Yang, Chenjia Bai, Zhaoran Wang, Jing Jiang:
SCORE: Spurious COrrelation REduction for Offline Reinforcement Learning. CoRR abs/2110.12468 (2021) - [i58]Yingjie Fei, Zhuoran Yang, Yudong Chen, Zhaoran Wang:
Exponential Bellman Equation and Improved Regret Bounds for Risk-Sensitive Reinforcement Learning. CoRR abs/2111.03947 (2021) - [i57]Xiao-Yang Liu, Zechu Li, Zhuoran Yang, Jiahao Zheng, Zhaoran Wang, Anwar Walid, Jian Guo, Michael I. Jordan:
ElegantRL-Podracer: Scalable and Elastic Library for Cloud-Native Deep Reinforcement Learning. CoRR abs/2112.05923 (2021) - [i56]Han Zhong, Zhuoran Yang, Zhaoran Wang, Michael I. Jordan:
Can Reinforcement Learning Find Stackelberg-Nash Equilibria in General-Sum Markov Games with Myopic Followers? CoRR abs/2112.13521 (2021) - [i55]Yufeng Zhang, Siyu Chen, Zhuoran Yang, Michael I. Jordan, Zhaoran Wang:
Wasserstein Flow Meets Replicator Dynamics: A Mean-Field Analysis of Representation Learning in Actor-Critic. CoRR abs/2112.13530 (2021) - [i54]Gene Li, Junbo Li, Nathan Srebro, Zhaoran Wang, Zhuoran Yang:
Exponential Family Model-Based Reinforcement Learning via Score Matching. CoRR abs/2112.14195 (2021) - 2020
- [j5]Yubo Zhang
, Zhuoran Yang, Jiuchun Yang, Yuanyuan Yang
, Dongyan Wang, Yucong Zhang, Fengqin Yan, Lingxue Yu
, Liping Chang, Shuwen Zhang:
A Novel Model Integrating Deep Learning for Land Use/Cover Change Reconstruction: A Case Study of Zhenlai County, Northeast China. Remote. Sens. 12(20): 3314 (2020) - [c43]Chi Jin
, Zhuoran Yang, Zhaoran Wang, Michael I. Jordan:
Provably efficient reinforcement learning with linear function approximation. COLT 2020: 2137-2143 - [c42]Qiaomin Xie, Yudong Chen, Zhaoran Wang, Zhuoran Yang:
Learning Zero-Sum Simultaneous-Move Markov Games Using Function Approximation and Correlated Equilibrium. COLT 2020: 3674-3682 - [c41]Minshuo Chen, Yizhou Wang, Tianyi Liu, Zhuoran Yang, Xingguo Li, Zhaoran Wang, Tuo Zhao:
On Computation and Generalization of Generative Adversarial Imitation Learning. ICLR 2020 - [c40]Zuyue Fu, Zhuoran Yang, Yongxin Chen, Zhaoran Wang:
Actor-Critic Provably Finds Nash Equilibria of Linear-Quadratic Mean-Field Games. ICLR 2020 - [c39]Lingxiao Wang, Qi Cai, Zhuoran Yang, Zhaoran Wang:
Neural Policy Gradient Methods: Global Optimality and Rates of Convergence. ICLR 2020 - [c38]Qi Cai, Zhuoran Yang, Chi Jin, Zhaoran Wang:
Provably Efficient Exploration in Policy Optimization. ICML 2020: 1283-1294 - [c37]Sen Na, Yuwei Luo, Zhuoran Yang, Zhaoran Wang, Mladen Kolar:
Semiparametric Nonlinear Bipartite Graph Representation Learning with Provable Guarantees. ICML 2020: 7141-7152 - [c36]Shuang Qiu, Xiaohan Wei, Zhuoran Yang:
Robust One-Bit Recovery via ReLU Generative Networks: Near-Optimal Statistical Rate and Global Landscape Analysis. ICML 2020: 7857-7866 - [c35]Lingxiao Wang, Qi Cai, Zhuoran Yang, Zhaoran Wang:
On the Global Optimality of Model-Agnostic Meta-Learning. ICML 2020: 9837-9846 - [c34]Lingxiao Wang, Zhuoran Yang, Zhaoran Wang:
Breaking the Curse of Many Agents: Provable Mean Embedding Q-Iteration for Mean-Field Reinforcement Learning. ICML 2020: 10092-10103 - [c33]Yufeng Zhang, Qi Cai, Zhuoran Yang, Zhaoran Wang:
Generative Adversarial Imitation Learning with Neural Network Parameterization: Global Optimality and Convergence Rate. ICML 2020: 11044-11054 - [c32]Jianqing Fan, Zhaoran Wang, Yuchen Xie, Zhuoran Yang:
A Theoretical Analysis of Deep Q-Learning. L4DC 2020: 486-489 - [c31]Yingjie Fei, Zhuoran Yang, Yudong Chen, Zhaoran Wang, Qiaomin Xie:
Risk-Sensitive Reinforcement Learning: Near-Optimal Risk-Sample Tradeoff in Regret. NeurIPS 2020 - [c30]Yingjie Fei, Zhuoran Yang, Zhaoran Wang, Qiaomin Xie:
Dynamic Regret of Policy Optimization in Non-Stationary Environments. NeurIPS 2020 - [c29]Wanxin Jin, Zhaoran Wang, Zhuoran Yang, Shaoshuai Mou:
Pontryagin Differentiable Programming: An End-to-End Learning and Control Framework. NeurIPS 2020 - [c28]Luofeng Liao, You-Lin Chen, Zhuoran Yang, Bo Dai, Mladen Kolar, Zhaoran Wang:
Provably Efficient Neural Estimation of Structural Equation Models: An Adversarial Approach. NeurIPS 2020 - [c27]Shuang Qiu, Xiaohan Wei, Zhuoran Yang, Jieping Ye, Zhaoran Wang:
Upper Confidence Primal-Dual Reinforcement Learning for CMDP with Adversarial Loss. NeurIPS 2020 - [c26]Hoi-To Wai, Zhuoran Yang, Zhaoran Wang, Mingyi Hong:
Provably Efficient Neural GTD for Off-Policy Learning. NeurIPS 2020 - [c25]Zhuoran Yang, Chi Jin, Zhaoran Wang, Mengdi Wang, Michael I. Jordan:
Provably Efficient Reinforcement Learning with Kernel and Neural Function Approximations. NeurIPS 2020 - [c24]Yufeng Zhang, Qi Cai, Zhuoran Yang, Yongxin Chen, Zhaoran Wang:
Can Temporal-Difference and Q-Learning Learn Representation? A Mean-Field Theory. NeurIPS 2020 - [i53]Minshuo Chen, Yizhou Wang
, Tianyi Liu, Zhuoran Yang, Xingguo Li, Zhaoran Wang, Tuo Zhao:
On Computation and Generalization of Generative Adversarial Imitation Learning. CoRR abs/2001.02792 (2020) - [i52]Qiaomin Xie, Yudong Chen, Zhaoran Wang, Zhuoran Yang:
Learning Zero-Sum Simultaneous-Move Markov Games Using Function Approximation and Correlated Equilibrium. CoRR abs/2002.07066 (2020) - [i51]Dongsheng Ding, Xiaohan Wei, Zhuoran Yang, Zhaoran Wang, Mihailo R. Jovanovic:
Provably Efficient Safe Exploration via Primal-Dual Policy Optimization. CoRR abs/2003.00534 (2020) - [i50]Shuang Qiu, Xiaohan Wei, Zhuoran Yang, Jieping Ye, Zhaoran Wang:
Upper Confidence Primal-Dual Optimization: Stochastically Constrained Markov Decision Processes with Adversarial Losses and Unknown Transitions. CoRR abs/2003.00660 (2020) - [i49]Sen Na, Yuwei Luo, Zhuoran Yang, Zhaoran Wang, Mladen Kolar:
Semiparametric Nonlinear Bipartite Graph Representation Learning with Provable Guarantees. CoRR abs/2003.01013 (2020) - [i48]Yufeng Zhang, Qi Cai, Zhuoran Yang, Zhaoran Wang:
Generative Adversarial Imitation Learning with Neural Networks: Global Optimality and Convergence Rate. CoRR abs/2003.03709 (2020) - [i47]Yufeng Zhang, Qi Cai, Zhuoran Yang, Yongxin Chen, Zhaoran Wang:
Can Temporal-Difference and Q-Learning Learn Representation? A Mean-Field Theory. CoRR abs/2006.04761 (2020) - [i46]Wanxin Jin, Zhaoran Wang, Zhuoran Yang, Shaoshuai Mou:
Neural Certificates for Safe Control Policies. CoRR abs/2006.08465 (2020) - [i45]Lingxiao Wang, Zhuoran Yang, Zhaoran Wang:
Breaking the Curse of Many Agents: Provable Mean Embedding Q-Iteration for Mean-Field Reinforcement Learning. CoRR abs/2006.11917 (2020) - [i44]Lingxiao Wang, Zhuoran Yang, Zhaoran Wang:
Provably Efficient Causal Reinforcement Learning with Confounded Observational Data. CoRR abs/2006.12311 (2020) - [i43]