


Остановите войну!
for scientists:


default search action
Mahesan Niranjan
Person information

- affiliation: University of Southampton, UK
Refine list

refinements active!
zoomed in on ?? of ?? records
view refined list in
export refined list as
showing all ?? records
2020 – today
- 2022
- [j62]Ioan Ieremie
, Rob M. Ewing, Mahesan Niranjan
:
TransformerGO: predicting protein-protein interactions by modelling the attention between sets of gene ontology terms. Bioinform. 38(8): 2269-2277 (2022) - [j61]Rubaiyat Mohammad Khondaker, Stephen Gow, Samantha Kanza
, Jeremy G. Frey
, Mahesan Niranjan:
Robustness under parameter and problem domain alterations of Bayesian optimization methods for chemical reactions. J. Cheminformatics 14(1): 59 (2022) - [j60]Omar Shetta
, Mahesan Niranjan
, Srinandan Dasmahapatra:
Convex Multi-View Clustering Via Robust Low Rank Approximation With Application to Multi-Omic Data. IEEE ACM Trans. Comput. Biol. Bioinform. 19(6): 3340-3352 (2022) - [c72]Mona Alawadh, Yihong Wu, Yuwen Heng, Luca Remaggi, Mahesan Niranjan, Hansung Kim:
Room Acoustic Properties Estimation from a Single 360° Photo. EUSIPCO 2022: 857-861 - [c71]Shengyu Lu
, Sasan Mahmoodi, Mahesan Niranjan:
Robust 3D rotation invariant local binary pattern for volumetric texture classification. ICPR 2022: 578-584 - [c70]Junwen Wang, Xin Du, Katayoun Farrahi, Mahesan Niranjan:
Deep Cascade Learning for Optimal Medical Image Feature Representation. MLHC 2022: 54-78 - 2021
- [j59]Xin Du
, Katayoun Farrahi
, Mahesan Niranjan
:
Information Bottleneck Theory Based Exploration of Cascade Learning. Entropy 23(10): 1360 (2021) - [j58]Samantha Kanza
, Colin Leonard Bird
, Mahesan Niranjan
, William McNeill
, Jeremy Graham Frey
:
The AI for Scientific Discovery Network+. Patterns 2(1): 100162 (2021) - [c69]Yihong Wu, Yuwen Heng
, Mahesan Niranjan
, Hansung Kim
:
Depth Estimation from a Single Omnidirectional Image using Domain Adaptation. CVMP 2021: 3:1-3:9 - [c68]Premananth Gowtham
, Mahesan Niranjan
, Kaneswaran Anantharajah:
Automated gastrointestinal abnormalities detection from endoscopic images. ICIIS 2021: 191-196 - 2020
- [j57]Tristan Millington
, Mahesan Niranjan
:
Partial correlation financial networks. Appl. Netw. Sci. 5(1): 11 (2020) - [j56]Francisco Belchí Guillamón, Jacek Brodzki, Matthew Burfitt, Mahesan Niranjan:
A Numerical Measure of the Instability of Mapper-Type Algorithms. J. Mach. Learn. Res. 21: 202:1-202:45 (2020) - [j55]Donya Rahmani
, Mahesan Niranjan
, Damien Fay, Akiko Takeda, Jacek Brodzki:
Estimation of Gaussian mixture models via tensor moments with application to online learning. Pattern Recognit. Lett. 131: 285-292 (2020) - [i7]Ethan Harris
, Antonia Marcu, Matthew Painter, Mahesan Niranjan, Adam Prügel-Bennett, Jonathon S. Hare:
Understanding and Enhancing Mixed Sample Data Augmentation. CoRR abs/2002.12047 (2020) - [i6]Manuel Nunes
, Enrico H. Gerding, Frank McGroarty, Mahesan Niranjan:
Long short-term memory networks and laglasso for bond yield forecasting: Peeping inside the black box. CoRR abs/2005.02217 (2020) - [i5]Tristan Millington, Mahesan Niranjan:
Construction of Minimum Spanning Trees from Financial Returns using Rank Correlation. CoRR abs/2005.03963 (2020)
2010 – 2019
- 2019
- [j54]Gregory M. Parkes
, Mahesan Niranjan
:
Uncovering extensive post-translation regulation during human cell cycle progression by integrative multi-'omics analysis. BMC Bioinform. 20(1): 536:1-536:13 (2019) - [j53]Manuel Nunes
, Enrico H. Gerding, Frank McGroarty
, Mahesan Niranjan
:
A comparison of multitask and single task learning with artificial neural networks for yield curve forecasting. Expert Syst. Appl. 119: 362-375 (2019) - [c67]Xin Du
, Katayoun Farrahi
, Mahesan Niranjan
:
Transfer learning across human activities using a cascade neural network architecture. UbiComp 2019: 35-44 - [c66]Guillermo Romero Moreno
, Mahesan Niranjan
, Adam Prügel-Bennett:
Saliency Map on Cnns for Protein Secondary Structure Prediction. ICASSP 2019: 1249-1253 - [c65]Bahman Asadi, Mahesan Niranjan
:
Representation-dimensionality Trade-off in Biological Sequence-based Inference. IJCNN 2019: 1-7 - [c64]Pratheeba Jeyananthan, Mahesan Niranjan
:
Classification and Regression Analysis of Lung Tumors from Multi-level Gene Expression Data. IJCNN 2019: 1-8 - [c63]Tristan Millington
, Mahesan Niranjan
:
Quantifying Influence in Financial Markets via Partial Correlation Network Inference. ISPA 2019: 306-311 - [c62]Luis Montesdeoca, Steven Squires, Mahesan Niranjan
:
Variational Autoencoder for Non-Negative Matrix Factorization with Exogenous Inputs Applied to Financial Data Modelling. ISPA 2019: 312-317 - [c61]Luis Montesdeoca, Mahesan Niranjan
:
On Comparing the Influences of Exogenous Information on Bitcoin Prices and Stock Index Values. MARBLE 2019: 93-100 - [i4]Ethan Harris, Mahesan Niranjan, Jonathon S. Hare:
A Biologically Inspired Visual Working Memory for Deep Networks. CoRR abs/1901.03665 (2019) - [i3]Steven Squires, Adam Prügel-Bennett, Mahesan Niranjan:
Minimum description length as an objective function for non-negative matrix factorization. CoRR abs/1902.01632 (2019) - [i2]Francisco Belchí Guillamón, Jacek Brodzki, Matthew Burfitt, Mahesan Niranjan:
A numerical measure of the instability of Mapper-type algorithms. CoRR abs/1906.01507 (2019) - [i1]Steven Squires, Adam Prügel-Bennett, Mahesan Niranjan:
A Variational Autoencoder for Probabilistic Non-Negative Matrix Factorisation. CoRR abs/1906.05912 (2019) - 2018
- [j52]Mariam Pirashvili, Lee Steinberg, Francisco Belchí Guillamón
, Mahesan Niranjan
, Jeremy G. Frey
, Jacek Brodzki:
Improved understanding of aqueous solubility modeling through topological data analysis. J. Cheminformatics 10(1): 54:1-54:14 (2018) - [j51]Enrique S. Marquez
, Jonathon S. Hare
, Mahesan Niranjan
:
Deep Cascade Learning. IEEE Trans. Neural Networks Learn. Syst. 29(11): 5475-5485 (2018) - 2017
- [j50]Steven Squires
, Adam Prügel-Bennett, Mahesan Niranjan
:
Rank Selection in Nonnegative Matrix Factorization using Minimum Description Length. Neural Comput. 29(8): 2164-2176 (2017) - [c60]Steven Squires
, Rob M. Ewing, Adam Prügel-Bennett, Mahesan Niranjan
:
A Method of Integrating Spatial Proteomics and Protein-Protein Interaction Network Data. ICONIP (5) 2017: 782-790 - [c59]Tristan Millington
, Mahesan Niranjan
:
Robust Portfolio Risk Minimization Using the Graphical Lasso. ICONIP (2) 2017: 863-872 - [c58]Steven Squires
, Luis Montesdeoca, Adam Prügel-Bennett, Mahesan Niranjan
:
Non-Negative Matrix Factorization with Exogenous Inputs for Modeling Financial Data. ICONIP (2) 2017: 873-881 - 2016
- [j49]Chathurika Dharmagunawardhana, Sasan Mahmoodi, Michael J. Bennett
, Mahesan Niranjan
:
Rotation invariant texture descriptors based on Gaussian Markov random fields for classification. Pattern Recognit. Lett. 69: 15-21 (2016) - [c57]Luis Montesdeoca, Mahesan Niranjan
:
Extending the feature set of a data-driven artificial neural network model of pricing financial options. SSCI 2016: 1-6 - 2015
- [j48]Haifen Chen, Jing Guo, Shital K. Mishra, Paul Robson
, Mahesan Niranjan
, Jie Zheng:
Single-cell transcriptional analysis to uncover regulatory circuits driving cell fate decisions in early mouse development. Bioinform. 31(7): 1060-1066 (2015) - [j47]Yawwani Gunawardana, Shuhei Fujiwara, Akiko Takeda, Jeongmin Woo, Christopher H. Woelk
, Mahesan Niranjan
:
Outlier detection at the transcriptome-proteome interface. Bioinform. 31(15): 2530-2536 (2015) - [j46]Thilini Nadungodage, Ruvan Weerasinghe, Mahesan Niranjan:
Speaker Adaptation Applied to Sinhala Speech Recognition. Int. J. Comput. Linguistics Appl. 6(1): 117-129 (2015) - [j45]Jonathon S. Hare
, Sina Samangooei, Mahesan Niranjan
, Nicholas Gibbins:
Detection of social events in streams of social multimedia. Int. J. Multim. Inf. Retr. 4(4): 289-302 (2015) - [j44]Abdullah Alrajeh, Mahesan Niranjan:
Scalable Reordering Models for SMT based on Multiclass SVM. Prague Bull. Math. Linguistics 103: 65-84 (2015) - [j43]Viraj Welgama, Ruvan Weerasinghe, Mahesan Niranjan:
Defining the Gold Standard Definitions for the Morphology of Sinhala Words. Res. Comput. Sci. 90: 163-171 (2015) - [c56]Randil Pushpananda, Ruvan Weerasinghe, Mahesan Niranjan
:
Statistical Machine Translation from and into Morphologically Rich and Low Resourced Languages. CICLing (1) 2015: 545-556 - [c55]Avi Rosenfeld, David G. Graham, Rifat A. Hamoudi
, Rommel Butawan, Victor Eneh, Saif Khan, Haroon Miah, Mahesan Niranjan
, Laurence B. Lovat
:
MIAT: A novel attribute selection approach to better predict upper gastrointestinal cancer. DSAA 2015: 1-7 - 2014
- [j42]Kaya Kuru
, Mahesan Niranjan
, Yusuf Tunca, Erhan Osvank, Tayyaba Azim:
Biomedical visual data analysis to build an intelligent diagnostic decision support system in medical genetics. Artif. Intell. Medicine 62(2): 105-118 (2014) - [j41]Chathurika Dharmagunawardhana, Sasan Mahmoodi, Michael J. Bennett
, Mahesan Niranjan
:
Gaussian Markov random field based improved texture descriptor for image segmentation. Image Vis. Comput. 32(11): 884-895 (2014) - [c54]Randil Pushpananda, Ruvan Weerasinghe, Mahesan Niranjan:
Sinhala-Tamil Machine Translation: Towards better Translation Quality. ALTA 2014: 129-133 - [c53]Abdullah Alrajeh, Mahesan Niranjan
:
Large-scale Reordering Model for Statistical Machine Translation using Dual Multinomial Logistic Regression. EMNLP 2014: 1758-1763 - [c52]Abdullah Alrajeh, Akiko Takeda, Mahesan Niranjan
:
Memory-efficient large-scale linear support vector machine. ICMV 2014: 944527 - [c51]Chathurika Dharmagunawardhana, Sasan Mahmoodi, Michael J. Bennett, Mahesan Niranjan
:
An Inhomogeneous Bayesian Texture Model for Spatially Varying Parameter Estimation. ICPRAM 2014: 139-146 - [c50]Chathurika Dharmagunawardhana, Sasan Mahmoodi, Michael J. Bennett, Mahesan Niranjan
:
Quantitative Analysis of Pulmonary Emphysema using Isotropic Gaussian Markov Random Fields. VISAPP (3) 2014: 44-53 - [c49]Tayyaba Azim, Mahesan Niranjan:
Computational Models of Object Recognition - Goal, Role and Success. VISAPP (1) 2014: 179-186 - [c48]Tayyaba Azim, Mahesan Niranjan
:
Texture Classification with Fisher Kernel Extracted from the Continuous Models of RBM. VISAPP (2) 2014: 684-690 - [c47]Abdullah Alrajeh, Mahesan Niranjan:
Bayesian Reordering Model with Feature Selection. WMT@ACL 2014: 477-485 - 2013
- [j40]Yawwani Gunawardana, Mahesan Niranjan
:
Bridging the gap between transcriptome and proteome measurements identifies post-translationally regulated genes. Bioinform. 29(23): 3060-3066 (2013) - [j39]Akiko Takeda, Mahesan Niranjan
, Jun-ya Gotoh, Yoshinobu Kawahara
:
Simultaneous pursuit of out-of-sample performance and sparsity in index tracking portfolios. Comput. Manag. Sci. 10(1): 21-49 (2013) - [j38]Taihai Chen
, Evangelos B. Mazomenos
, Koushik Maharatna
, Srinandan Dasmahapatra, Mahesan Niranjan
:
Design of a Low-Power On-Body ECG Classifier for Remote Cardiovascular Monitoring Systems. IEEE J. Emerg. Sel. Topics Circuits Syst. 3(1): 75-85 (2013) - [j37]Ali Hassan
, Robert I. Damper, Mahesan Niranjan
:
On Acoustic Emotion Recognition: Compensating for Covariate Shift. IEEE Trans. Speech Audio Process. 21(7): 1458-1468 (2013) - [c46]Tim Matthews, Mark S. Nixon
, Mahesan Niranjan
:
Enriching Texture Analysis with Semantic Data. CVPR 2013: 1248-1255 - [c45]Piyushkumar A. Mundra
, Jie Zheng, Mahesan Niranjan
, Roy E. Welsch, Jagath C. Rajapakse
:
Inferring Time-Delayed Gene Regulatory Networks Using Cross-Correlation and Sparse Regression. ISBRA 2013: 64-75 - [c44]Sina Samangooei, Jonathon S. Hare, David Dupplaw, Mahesan Niranjan, Nicholas Gibbins, Paul H. Lewis, Jamie Davies, Neha Jain, John Preston:
Social Event Detection Via Sparse Multi-modal Feature Selection and Incremental Density Based Clustering. MediaEval 2013 - [c43]Tayyaba Azim, Mahesan Niranjan
:
Inducing discrimination in biologically inspired models of visual scene recognition. MLSP 2013: 1-6 - [c42]B. Mayurathan, U. A. J. Pinidiyaarachchi, Mahesan Niranjan
:
Compact codebook design for visual scene recognition by Sequential Input Space Carving. MLSP 2013: 1-6 - 2012
- [j36]Wei Liu, Mahesan Niranjan
:
Gaussian process modelling for bicoid mRNA regulation in spatio-temporal Bicoid profile. Bioinform. 28(3): 366-372 (2012) - [j35]Xin Liu, Mahesan Niranjan
:
State and parameter estimation of the heat shock response system using Kalman and particle filters. Bioinform. 28(11): 1501-1507 (2012) - [j34]Ke Yuan, Mark A. Girolami
, Mahesan Niranjan
:
Markov Chain Monte Carlo Methods for State-Space Models with Point Process Observations. Neural Comput. 24(6): 1462-1486 (2012) - [j33]Amirthalingam Ramanan
, Mahesan Niranjan
:
A Review of Codebook Models in Patch-Based Visual Object Recognition. J. Signal Process. Syst. 68(3): 333-352 (2012) - [c41]Chathurika Dharmagunawardhana, Sasan Mahmoodi, Michael J. Bennett, Mahesan Niranjan
:
Unsupervised Texture Segmentation using Active Contours and Local Distributions of Gaussian Markov Random Field Parameters. BMVC 2012: 1-11 - [c40]Kaya Kuru
, Mahesan Niranjan
, Yusuf Tunca:
Establishment of a Diagnostic Decision Support System in Genetic Dysmorphology. ICMLA (2) 2012: 164-169 - [c39]Taihai Chen
, Evangelos B. Mazomenos
, Koushik Maharatna
, Srinandan Dasmahapatra, Mahesan Niranjan
:
On the Trade-Off of Accuracy and Computational Complexity for Classifying Normal and Abnormal ECG in Remote CVD Monitoring Systems. SiPS 2012: 37-42 - 2011
- [j32]Yizhao Ni, Craig Saunders, Sándor Szedmák, Mahesan Niranjan:
Exploitation of Machine Learning Techniques in Modelling Phrase Movements for Machine Translation. J. Mach. Learn. Res. 12: 1-30 (2011) - [j31]Andrew Zammit Mangion
, Ke Yuan, Visakan Kadirkamanathan
, Mahesan Niranjan
, Guido Sanguinetti:
Online Variational Inference for State-Space Models with Point-Process Observations. Neural Comput. 23(8): 1967-1999 (2011) - 2010
- [j30]Salih Tuna, Mahesan Niranjan
:
Reducing the algorithmic variability in transcriptome-based inference. Bioinform. 26(9): 1185-1191 (2010) - [j29]Ivan Markovsky, Mahesan Niranjan
:
Approximate low-rank factorization with structured factors. Comput. Stat. Data Anal. 54(12): 3411-3420 (2010) - [j28]Yizhao Ni
, Craig Saunders, Sándor Szedmák, Mahesan Niranjan
:
The application of structured learning in natural language processing. Mach. Transl. 24(2): 71-85 (2010) - [j27]Ke Yuan, Mahesan Niranjan
:
Estimating a State-Space Model from Point Process Observations: A Note on Convergence. Neural Comput. 22(8): 1993-2001 (2010) - [j26]Weichao Xu, Y. S. Hung, Mahesan Niranjan
, Minfen Shen:
Asymptotic mean and variance of Gini correlation for bivariate normal samples. IEEE Trans. Signal Process. 58(2): 522-534 (2010) - [j25]Salih Tuna, Mahesan Niranjan
:
Inference from Low Precision Transcriptome Data Representation. J. Signal Process. Syst. 58(3): 267-279 (2010) - [c38]Yizhao Ni
, Mahesan Niranjan
:
Exploiting Long-Range Dependencies in Protein beta-Sheet Secondary Structure Prediction. PRIB 2010: 349-357
2000 – 2009
- 2009
- [j24]Daniela Wieser, Mahesan Niranjan
:
Remote Homology Detection Using a Kernel Method that Combines Sequence and Secondary-Structure Similarity Scores. Silico Biol. 9(3): 89-103 (2009) - [c37]Yizhao Ni, Craig Saunders, Sándor Szedmák, Mahesan Niranjan:
Handling phrase reorderings for machine translation. ACL/IJCNLP (2) 2009: 241-244 - [c36]C. Q. Chang, Y. S. Hung, Mahesan Niranjan
:
Modelling uncertainty in transcriptome measurements enhances network component analysis of yeast metabolic cycle. ICASSP 2009: 1769-1772 - [c35]Bassam Farran, Amirthalingam Ramanan
, Mahesan Niranjan
:
Sequential Hierarchical Pattern Clustering. PRIB 2009: 79-88 - [c34]Salih Tuna, Mahesan Niranjan
:
Cross-Platform Analysis with Binarized Gene Expression Data. PRIB 2009: 439-449 - [e2]Visakan Kadirkamanathan
, Guido Sanguinetti, Mark A. Girolami, Mahesan Niranjan, Josselin Noirel:
Pattern Recognition in Bioinformatics, 4th IAPR International Conference, PRIB 2009, Sheffield, UK, September 7-9, 2009. Proceedings. Lecture Notes in Computer Science 5780, Springer 2009, ISBN 978-3-642-04030-6 [contents] - 2008
- [j23]Renata da Silva Camargo, Mahesan Niranjan:
Mining Protein Database using Machine Learning Techniques. J. Integr. Bioinform. 5(2) (2008) - [j22]Sujimarn Suwannaroj, Mahesan Niranjan
:
Enhancing Automatic Construction of Gene Subnetworks by Integrating Multiple Sources of Information. J. Signal Process. Syst. 50(3): 331-340 (2008) - [c33]Yang Zhang, Hongyu Li, Mahesan Niranjan
, Peter I. Rockett:
Applying Cost-Sensitive Multiobjective Genetic Programming to Feature Extraction for Spam E-mail Filtering. EuroGP 2008: 325-336 - 2007
- [j21]Anastasia Samsonova
, Mahesan Niranjan
, Steven Russell
, Alvis Brazma
:
Prediction of Gene Expression in Embryonic Structures of Drosophila melanogaster. PLoS Comput. Biol. 3(7) (2007) - 2006
- [c32]Hongyu Li, Mahesan Niranjan:
Outlier Detection in Benchmark Classification Tasks. ICASSP (5) 2006: 557-560 - [c31]Anjali Bharatkumar Samani, Joab R. Winkler, Mahesan Niranjan:
Automatic Face Recognition Using Stereo Images. ICASSP (5) 2006: 913-916 - 2005
- [e1]Joab R. Winkler, Mahesan Niranjan, Neil D. Lawrence
:
Deterministic and Statistical Methods in Machine Learning, First International Workshop, Sheffield, UK, September 7-10, 2004, Revised Lectures. Lecture Notes in Computer Science 3635, Springer 2005, ISBN 3-540-29073-7 [contents] - 2004
- [j20]Neil D. Lawrence
, Marta Milo, Mahesan Niranjan
, Penny Rashbass, Stephan Soullier:
Reducing the variability in cDNA microarray image processing by Bayesian inference. Bioinform. 20(4): 518-526 (2004) - 2003
- [j19]Si Wu, Danmei Chen, Mahesan Niranjan
, Shun-ichi Amari:
Sequential Bayesian Decoding with a Population of Neurons. Neural Comput. 15(5): 993-1012 (2003) - [c30]Mahesan Suwannaroj, Mahesan Niranjan
:
Subspaces of text discrimination with application to biological literature. NNSP 2003: 3-12 - [c29]Neil D. Lawrence, Marta Milo, Mahesan Niranjan
, Penny Rashbass, Stephan Soullier:
Bayesian processing of microarray images. NNSP 2003: 71-80 - 2002
- [j18]Klaus Reinhard, Mahesan Niranjan
:
Diphone subspace mixture trajectory models for HMM complementation. Speech Commun. 38(3-4): 237-265 (2002) - 2001
- [j17]Gaafar M. K. Saleh, Mahesan Niranjan
:
Speech enhancement using a Bayesian evidence approach. Comput. Speech Lang. 15(2): 101-125 (2001) - [c28]Konstantinos Koumpis, Steve Renals, Mahesan Niranjan:
Extractive summarization of voicemail using lexical and prosodic feature subset selection. INTERSPEECH 2001: 2377-2380 - 2000
- [j16]João F. G. de Freitas, Mahesan Niranjan
, Andrew H. Gee:
Hierarchical Bayesian Models for Regularization in Sequential Learning. Neural Comput. 12(4): 933-953 (2000) - [j15]João F. G. de Freitas, Mahesan Niranjan
, Andrew H. Gee, Arnaud Doucet:
Sequential Monte Carlo Methods to Train Neural Network Models. Neural Comput. 12(4): 955-993 (2000) - [j14]David G. Melvin, Mahesan Niranjan
, Richard W. Prager
, Andrew K. Trull, Vikki F. Hughes:
Neuro-computing versus linear statistical techniques applied to liver transplant monitoring: a comparative study. IEEE Trans. Biomed. Eng. 47(8): 1036-1043 (2000) - [j13]João F. G. de Freitas, Mahesan Niranjan
, Andrew H. Gee:
Dynamic Learning with the EM Algorithm for Neural Networks. J. VLSI Signal Process. 26(1-2): 119-131 (2000) - [c27]Klaus Reinhard, Mahesan Niranjan
:
Matched filter design for diphone subspace models. ICASSP 2000: 3430-3433 - [c26]Nathan Smith, Mahesan Niranjan:
Data-dependent kernels in svm classification of speech patterns. INTERSPEECH 2000: 297-300
1990 – 1999
- 1999
- [j12]Klaus Reinhard, Mahesan Niranjan
:
Parametric subspace modeling of speech transitions. Speech Commun. 27(1): 19-42 (1999) - [c25]Klaus Reinhard, Mahesan Niranjan
:
Diphone multi-trajectory subspace models. ICASSP 1999: 1001-1004 - [c24]João F. G. de Freitas, Mahesan Niranjan, Andrew H. Gee:
Hybrid sequential Monte Carlo/Kalman methods to train neural networks in non-stationary environments. ICASSP 1999: 1057-1060 - [c23]Mahesan Niranjan:
Sequential Bayesian computation of logistic regression models. ICASSP 1999: 1065-1068 - [c22]Klaus Reinhard, Mahesan Niranjan:
Diphone subspace models for phone-based HMM complementation. EUROSPEECH 1999 - [c21]Gavin Smith, João F. G. de Freitas, Tony Robinson, Mahesan Niranjan:
Speech Modelling Using Subspace and EM Techniques. NIPS 1999: 796-802 - 1998
- [j11]David R. Lovell, Christopher R. Dance, Mahesan Niranjan
, Richard W. Prager, Kevin J. Dalton, R. Derom:
Feature selection using expected attainable discrimination. Pattern Recognit. Lett. 19(5-6): 393-402 (1998) - [c20]Martin J. J. Scott, Mahesan Niranjan, Richard W. Prager:
Realisable Classifiers: Improving Operating Performance on Variable Cost Problems. BMVC 1998: 1-10 - [c19]