


Остановите войну!
for scientists:


default search action
Zachary C. Lipton
Zachary Chase Lipton
Person information

- affiliation: Carnegie Mellon University, Machine Learning Department, Pittsburgh, PA, USA
- affiliation (PhD 2017): University of California, San Diego, CA, USA
Refine list

refinements active!
zoomed in on ?? of ?? records
view refined list in
export refined list as
showing all ?? records
2020 – today
- 2023
- [c90]Michael Feffer, Hoda Heidari, Zachary C. Lipton:
Moral Machine or Tyranny of the Majority? AAAI 2023: 5974-5982 - [c89]Kundan Krishna, Saurabh Garg, Jeffrey P. Bigham, Zachary C. Lipton:
Downstream Datasets Make Surprisingly Good Pretraining Corpora. ACL (1) 2023: 12207-12222 - [c88]Michael Feffer, Michael Skirpan, Zachary C. Lipton, Hoda Heidari:
From Preference Elicitation to Participatory ML: A Critical Survey & Guidelines for Future Research. AIES 2023: 38-48 - [c87]Helen Zhou, Sivaraman Balakrishnan, Zachary C. Lipton:
Domain Adaptation under Missingness Shift. AISTATS 2023: 9577-9606 - [c86]Liu Leqi
, Giulio Zhou
, Fatma Kilinç-Karzan
, Zachary C. Lipton
, Alan L. Montgomery
:
A Field Test of Bandit Algorithms for Recommendations: Understanding the Validity of Assumptions on Human Preferences in Multi-armed Bandits. CHI 2023: 504:1-504:16 - [c85]Helen Zhou, Yuwen Chen, Zachary C. Lipton:
Evaluating Model Performance in Medical Datasets Over Time. CHIL 2023: 498-508 - [c84]Shantanu Gupta, David Childers, Zachary Chase Lipton:
Local Causal Discovery for Estimating Causal Effects. CLeaR 2023: 408-447 - [c83]Zachary Novack, Simran Kaur, Tanya Marwah, Saurabh Garg, Zachary Chase Lipton:
Disentangling the Mechanisms Behind Implicit Regularization in SGD. ICLR 2023 - [c82]Saurabh Garg, Nick Erickson, James Sharpnack, Alex Smola, Sivaraman Balakrishnan, Zachary Chase Lipton:
RLSbench: Domain Adaptation Under Relaxed Label Shift. ICML 2023: 10879-10928 - [c81]Pratyush Maini, Michael Curtis Mozer, Hanie Sedghi, Zachary Chase Lipton, J. Zico Kolter, Chiyuan Zhang:
Can Neural Network Memorization Be Localized? ICML 2023: 23536-23557 - [c80]Tanya Marwah, Zachary Chase Lipton, Jianfeng Lu, Andrej Risteski:
Neural Network Approximations of PDEs Beyond Linearity: A Representational Perspective. ICML 2023: 24139-24172 - [c79]Zachary Novack, Julian J. McAuley, Zachary Chase Lipton, Saurabh Garg:
CHiLS: Zero-Shot Image Classification with Hierarchical Label Sets. ICML 2023: 26342-26362 - [c78]Shubhanshu Shekhar, Ziyu Xu, Zachary C. Lipton, Pierre J. Liang, Aaditya Ramdas:
Risk-limiting financial audits via weighted sampling without replacement. UAI 2023: 1932-1941 - [i120]Jacob Tyo, Zachary C. Lipton:
Meta-Learning Mini-Batch Risk Functionals. CoRR abs/2301.11724 (2023) - [i119]Zachary Novack, Saurabh Garg, Julian J. McAuley, Zachary C. Lipton:
CHiLS: Zero-Shot Image Classification with Hierarchical Label Sets. CoRR abs/2302.02551 (2023) - [i118]Saurabh Garg, Nick Erickson, James Sharpnack, Alex Smola, Sivaraman Balakrishnan, Zachary C. Lipton:
RLSbench: Domain Adaptation Under Relaxed Label Shift. CoRR abs/2302.03020 (2023) - [i117]Tom Yan, Shantanu Gupta, Zachary C. Lipton:
Discovering Optimal Scoring Mechanisms in Causal Strategic Prediction. CoRR abs/2302.06804 (2023) - [i116]Shantanu Gupta, David Childers, Zachary C. Lipton:
Local Causal Discovery for Estimating Causal Effects. CoRR abs/2302.08070 (2023) - [i115]Alex Mei, Michael Saxon, Shiyu Chang, Zachary C. Lipton, William Yang Wang:
Users are the North Star for AI Transparency. CoRR abs/2303.05500 (2023) - [i114]Mrigank Raman, Pratyush Maini, J. Zico Kolter, Zachary C. Lipton, Danish Pruthi:
Model-tuning Via Prompts Makes NLP Models Adversarially Robust. CoRR abs/2303.07320 (2023) - [i113]Liu Leqi, Giulio Zhou, Fatma Kilinç-Karzan, Zachary C. Lipton, Alan L. Montgomery:
A Field Test of Bandit Algorithms for Recommendations: Understanding the Validity of Assumptions on Human Preferences in Multi-armed Bandits. CoRR abs/2304.09088 (2023) - [i112]Shubhanshu Shekhar, Ziyu Xu, Zachary C. Lipton, Pierre J. Liang, Aaditya Ramdas:
Risk-limiting Financial Audits via Weighted Sampling without Replacement. CoRR abs/2305.06884 (2023) - [i111]Helen Zhou, Yuwen Chen, Zachary C. Lipton:
Evaluating Model Performance in Medical Datasets Over Time. CoRR abs/2305.13426 (2023) - [i110]Kundan Krishna, Prakhar Gupta, Sanjana Ramprasad, Byron C. Wallace, Jeffrey P. Bigham, Zachary C. Lipton:
USB: A Unified Summarization Benchmark Across Tasks and Domains. CoRR abs/2305.14296 (2023) - [i109]Dhananjay Ashok, Zachary C. Lipton:
PromptNER: Prompting For Named Entity Recognition. CoRR abs/2305.15444 (2023) - [i108]Michael Feffer, Hoda Heidari, Zachary C. Lipton:
Moral Machine or Tyranny of the Majority? CoRR abs/2305.17319 (2023) - [i107]Dheeraj Baby, Saurabh Garg, Tzu-Ching Yen, Sivaraman Balakrishnan, Zachary Chase Lipton, Yu-Xiang Wang:
Online Label Shift: Optimal Dynamic Regret meets Practical Algorithms. CoRR abs/2305.19570 (2023) - [i106]Pratyush Maini, Sachin Goyal, Zachary C. Lipton, J. Zico Kolter, Aditi Raghunathan:
T-MARS: Improving Visual Representations by Circumventing Text Feature Learning. CoRR abs/2307.03132 (2023) - [i105]Pratyush Maini, Michael C. Mozer, Hanie Sedghi, Zachary C. Lipton, J. Zico Kolter, Chiyuan Zhang:
Can Neural Network Memorization Be Localized? CoRR abs/2307.09542 (2023) - [i104]Jennifer Hsia, Danish Pruthi, Aarti Singh, Zachary C. Lipton:
Goodhart's Law Applies to NLP's Explanation Benchmarks. CoRR abs/2308.14272 (2023) - 2022
- [j9]Danish Pruthi, Rachit Bansal, Bhuwan Dhingra, Livio Baldini Soares, Michael Collins, Zachary C. Lipton, Graham Neubig, William W. Cohen:
Evaluating Explanations: How Much Do Explanations from the Teacher Aid Students? Trans. Assoc. Comput. Linguistics 10: 359-375 (2022) - [c77]Siddhant Arora, Danish Pruthi, Norman M. Sadeh, William W. Cohen, Zachary C. Lipton, Graham Neubig:
Explain, Edit, and Understand: Rethinking User Study Design for Evaluating Model Explanations. AAAI 2022: 5277-5285 - [c76]Omer Ben-Porat, Lee Cohen, Liu Leqi, Zachary C. Lipton, Yishay Mansour:
Modeling Attrition in Recommender Systems with Departing Bandits. AAAI 2022: 6072-6079 - [c75]Audrey Huang, Liu Leqi, Zachary C. Lipton, Kamyar Azizzadenesheli:
Off-Policy Risk Assessment for Markov Decision Processes. AISTATS 2022: 5022-5050 - [c74]Helen Zhou, Cheng Cheng, Kelly J. Shields, Gursimran Kochhar, Tariq Cheema, Zachary C. Lipton, Jeremy C. Weiss:
Learning Clinical Concepts for Predicting Risk of Progression to Severe COVID-19. AMIA 2022 - [c73]Anurag Katakkar, Clay H. Yoo, Weiqin Wang, Zachary C. Lipton, Divyansh Kaushik:
Practical Benefits of Feature Feedback Under Distribution Shift. BlackboxNLP@EMNLP 2022: 346-355 - [c72]Simran Kaur, Jeremy Cohen, Zachary Chase Lipton:
On the Maximum Hessian Eigenvalue and Generalization. ICBINB 2022: 51-65 - [c71]Saurabh Garg, Sivaraman Balakrishnan, Zachary Chase Lipton, Behnam Neyshabur, Hanie Sedghi:
Leveraging unlabeled data to predict out-of-distribution performance. ICLR 2022 - [c70]Liu Leqi, Audrey Huang, Zachary C. Lipton, Kamyar Azizzadenesheli:
Supervised Learning with General Risk Functionals. ICML 2022: 12570-12592 - [c69]Saurabh Garg, Sivaraman Balakrishnan, Zachary C. Lipton:
Domain Adaptation under Open Set Label Shift. NeurIPS 2022 - [c68]Pratyush Maini, Saurabh Garg, Zachary C. Lipton, J. Zico Kolter:
Characterizing Datapoints via Second-Split Forgetting. NeurIPS 2022 - [c67]Manley Roberts, Pranav Mani, Saurabh Garg, Zachary C. Lipton:
Unsupervised Learning under Latent Label Shift. NeurIPS 2022 - [e1]Zachary C. Lipton, Rajesh Ranganath, Mark P. Sendak, Michael W. Sjoding, Serena Yeung:
Proceedings of the Machine Learning for Healthcare Conference, MLHC 2022, 5-6 August 2022, Durham, NC, USA. Proceedings of Machine Learning Research 182, PMLR 2022 [contents] - [i103]Saurabh Garg, Sivaraman Balakrishnan, Zachary C. Lipton, Behnam Neyshabur, Hanie Sedghi:
Leveraging Unlabeled Data to Predict Out-of-Distribution Performance. CoRR abs/2201.04234 (2022) - [i102]Yi-Fan Zhang, Hanlin Zhang, Zachary C. Lipton, Li Erran Li, Eric P. Xing:
Can Transformers be Strong Treatment Effect Estimators? CoRR abs/2202.01336 (2022) - [i101]Omer Ben-Porat, Lee Cohen, Liu Leqi, Zachary C. Lipton, Yishay Mansour:
Modeling Attrition in Recommender Systems with Departing Bandits. CoRR abs/2203.13423 (2022) - [i100]Riccardo Fogliato, Sina Fazelpour, Shantanu Gupta, Zachary C. Lipton, David Danks:
Homophily and Incentive Effects in Use of Algorithms. CoRR abs/2205.09701 (2022) - [i99]Divyansh Kaushik, Zachary C. Lipton, Alex John London:
Resolving the Human Subjects Status of Machine Learning's Crowdworkers. CoRR abs/2206.04039 (2022) - [i98]Simran Kaur, Jeremy Cohen, Zachary C. Lipton:
On the Maximum Hessian Eigenvalue and Generalization. CoRR abs/2206.10654 (2022) - [i97]Liu Leqi, Audrey Huang, Zachary C. Lipton, Kamyar Azizzadenesheli:
Supervised Learning with General Risk Functionals. CoRR abs/2206.13648 (2022) - [i96]Saurabh Garg, Sivaraman Balakrishnan, Zachary C. Lipton:
Domain Adaptation under Open Set Label Shift. CoRR abs/2207.13048 (2022) - [i95]Manley Roberts, Pranav Mani, Saurabh Garg, Zachary C. Lipton:
Unsupervised Learning under Latent Label Shift. CoRR abs/2207.13179 (2022) - [i94]Helen Zhou, Cheng Cheng, Kelly J. Shields, Gursimran Kochhar, Tariq Cheema, Zachary C. Lipton, Jeremy C. Weiss:
Learning Clinical Concepts for Predicting Risk of Progression to Severe COVID-19. CoRR abs/2208.13126 (2022) - [i93]Jacob Tyo, Bhuwan Dhingra, Zachary C. Lipton:
On the State of the Art in Authorship Attribution and Authorship Verification. CoRR abs/2209.06869 (2022) - [i92]Audrey Huang, Liu Leqi, Zachary Chase Lipton, Kamyar Azizzadenesheli:
Off-Policy Risk Assessment in Markov Decision Processes. CoRR abs/2209.10444 (2022) - [i91]Kundan Krishna, Saurabh Garg, Jeffrey P. Bigham, Zachary C. Lipton:
Downstream Datasets Make Surprisingly Good Pretraining Corpora. CoRR abs/2209.14389 (2022) - [i90]Rasool Fakoor, Jonas Mueller, Zachary C. Lipton, Pratik Chaudhari, Alexander J. Smola:
Data drift correction via time-varying importance weight estimator. CoRR abs/2210.01422 (2022) - [i89]Tanya Marwah, Zachary C. Lipton, Jianfeng Lu, Andrej Risteski:
Neural Network Approximations of PDEs Beyond Linearity: Representational Perspective. CoRR abs/2210.12101 (2022) - [i88]Pratyush Maini, Saurabh Garg, Zachary C. Lipton, J. Zico Kolter:
Characterizing Datapoints via Second-Split Forgetting. CoRR abs/2210.15031 (2022) - [i87]Helen Zhou, Sivaraman Balakrishnan, Zachary C. Lipton:
Domain Adaptation under Missingness Shift. CoRR abs/2211.02093 (2022) - [i86]Helen Zhou, Yuwen Chen, Zachary C. Lipton:
Model Evaluation in Medical Datasets Over Time. CoRR abs/2211.07165 (2022) - [i85]Zachary Novack, Simran Kaur, Tanya Marwah, Saurabh Garg, Zachary C. Lipton:
Disentangling the Mechanisms Behind Implicit Regularization in SGD. CoRR abs/2211.15853 (2022) - 2021
- [j8]Liu Leqi, Dylan Hadfield-Menell, Zachary C. Lipton:
When curation becomes creation. Commun. ACM 64(12): 44-47 (2021) - [j7]Riccardo Fogliato, Alexandra Chouldechova, Zachary C. Lipton:
The Impact of Algorithmic Risk Assessments on Human Predictions and its Analysis via Crowdsourcing Studies. Proc. ACM Hum. Comput. Interact. 5(CSCW2): 428:1-428:24 (2021) - [j6]Liu Leqi, Dylan Hadfield-Menell, Zachary C. Lipton:
When Curation Becomes Creation: Algorithms, microcontent, and the vanishing distinction between platforms and creators. ACM Queue 19(3): 11-15 (2021) - [c66]Aashiq Muhamed, Liang Li, Xingjian Shi, Suri Yaddanapudi, Wayne Chi, Dylan Jackson, Rahul Suresh, Zachary C. Lipton, Alexander J. Smola:
Symbolic Music Generation with Transformer-GANs. AAAI 2021: 408-417 - [c65]Kundan Krishna, Sopan Khosla, Jeffrey P. Bigham, Zachary C. Lipton:
Generating SOAP Notes from Doctor-Patient Conversations Using Modular Summarization Techniques. ACL/IJCNLP (1) 2021: 4958-4972 - [c64]Divyansh Kaushik, Douwe Kiela, Zachary C. Lipton, Wen-tau Yih:
On the Efficacy of Adversarial Data Collection for Question Answering: Results from a Large-Scale Randomized Study. ACL/IJCNLP (1) 2021: 6618-6633 - [c63]Jessica Dai, Sina Fazelpour
, Zachary C. Lipton:
Fair Machine Learning Under Partial Compliance. AIES 2021: 55-65 - [c62]Riccardo Fogliato, Alice Xiang
, Zachary C. Lipton, Daniel Nagin, Alexandra Chouldechova:
On the Validity of Arrest as a Proxy for Offense: Race and the Likelihood of Arrest for Violent Crimes. AIES 2021: 100-111 - [c61]Kyra Gan, Andrew A. Li, Zachary Chase Lipton, Sridhar R. Tayur:
Causal Inference with Selectively Deconfounded Data. AISTATS 2021: 2791-2799 - [c60]Cheng Cheng, Helen Zhou, Jeremy C. Weiss, Zachary C. Lipton:
Unpacking the Drop in COVID-19 Case Fatality Rates: A Study of National and Florida Line-Level Data. AMIA 2021 - [c59]Jacob Tyo, Bhuwan Dhingra, Zachary C. Lipton:
Siamese Bert for Authorship Verification. CLEF (Working Notes) 2021: 2169-2177 - [c58]Kundan Krishna, Jeffrey P. Bigham, Zachary C. Lipton:
Does Pretraining for Summarization Require Knowledge Transfer? EMNLP (Findings) 2021: 3178-3189 - [c57]David Lowell, Brian E. Howard, Zachary C. Lipton, Byron C. Wallace:
Unsupervised Data Augmentation with Naive Augmentation and without Unlabeled Data. EMNLP (1) 2021: 4992-5001 - [c56]Divyansh Kaushik, Amrith Setlur, Eduard H. Hovy, Zachary Chase Lipton:
Explaining the Efficacy of Counterfactually Augmented Data. ICLR 2021 - [c55]Saurabh Garg, Sivaraman Balakrishnan, J. Zico Kolter, Zachary C. Lipton:
RATT: Leveraging Unlabeled Data to Guarantee Generalization. ICML 2021: 3598-3609 - [c54]Saurabh Garg, Joshua Zhanson, Emilio Parisotto, Adarsh Prasad, J. Zico Kolter, Zachary C. Lipton, Sivaraman Balakrishnan, Ruslan Salakhutdinov, Pradeep Ravikumar:
On Proximal Policy Optimization's Heavy-tailed Gradients. ICML 2021: 3610-3619 - [c53]Shantanu Gupta, Hao Wang, Zachary C. Lipton, Yuyang Wang:
Correcting Exposure Bias for Link Recommendation. ICML 2021: 3953-3963 - [c52]Liu Leqi, Fatma Kilinç-Karzan, Zachary C. Lipton, Alan L. Montgomery:
Rebounding Bandits for Modeling Satiation Effects. NeurIPS 2021: 4003-4014 - [c51]Saurabh Garg, Yifan Wu, Alexander J. Smola, Sivaraman Balakrishnan, Zachary C. Lipton:
Mixture Proportion Estimation and PU Learning: A Modern Approach. NeurIPS 2021: 8532-8544 - [c50]Tanya Marwah, Zachary C. Lipton, Andrej Risteski:
Parametric Complexity Bounds for Approximating PDEs with Neural Networks. NeurIPS 2021: 15044-15055 - [c49]Shantanu Gupta, Zachary C. Lipton, David Childers:
Efficient Online Estimation of Causal Effects by Deciding What to Observe. NeurIPS 2021: 20995-21007 - [c48]Audrey Huang, Liu Leqi, Zachary C. Lipton, Kamyar Azizzadenesheli:
Off-Policy Risk Assessment in Contextual Bandits. NeurIPS 2021: 23714-23726 - [c47]Shantanu Gupta, Zachary C. Lipton, David Childers:
Estimating treatment effects with observed confounders and mediators. UAI 2021: 982-991 - [i84]Saurabh Garg, Joshua Zhanson, Emilio Parisotto, Adarsh Prasad, J. Zico Kolter, Sivaraman Balakrishnan, Zachary C. Lipton, Ruslan Salakhutdinov, Pradeep Ravikumar:
On Proximal Policy Optimization's Heavy-tailed Gradients. CoRR abs/2102.10264 (2021) - [i83]Tanya Marwah, Zachary C. Lipton, Andrej Risteski:
Parametric Complexity Bounds for Approximating PDEs with Neural Networks. CoRR abs/2103.02138 (2021) - [i82]Audrey Huang, Liu Leqi, Zachary C. Lipton, Kamyar Azizzadenesheli:
On the Convergence and Optimality of Policy Gradient for Markov Coherent Risk. CoRR abs/2103.02827 (2021) - [i81]Audrey Huang, Liu Leqi, Zachary C. Lipton, Kamyar Azizzadenesheli:
Off-Policy Risk Assessment in Contextual Bandits. CoRR abs/2104.08977 (2021) - [i80]Saurabh Garg, Sivaraman Balakrishnan, J. Zico Kolter, Zachary C. Lipton:
RATT: Leveraging Unlabeled Data to Guarantee Generalization. CoRR abs/2105.00303 (2021) - [i79]Divyansh Kaushik, Douwe Kiela, Zachary C. Lipton, Wen-tau Yih:
On the Efficacy of Adversarial Data Collection for Question Answering: Results from a Large-Scale Randomized Study. CoRR abs/2106.00872 (2021) - [i78]Shantanu Gupta, Hao Wang, Zachary C. Lipton, Yuyang Wang:
Correcting Exposure Bias for Link Recommendation. CoRR abs/2106.07041 (2021) - [i77]Aston Zhang, Zachary C. Lipton, Mu Li, Alexander J. Smola:
Dive into Deep Learning. CoRR abs/2106.11342 (2021) - [i76]Liu Leqi, Dylan Hadfield-Menell, Zachary C. Lipton:
When Curation Becomes Creation: Algorithms, Microcontent, and the Vanishing Distinction between Platforms and Creators. CoRR abs/2107.00441 (2021) - [i75]Shantanu Gupta, Zachary C. Lipton, David Childers:
Efficient Online Estimation of Causal Effects by Deciding What to Observe. CoRR abs/2108.09265 (2021) - [i74]Riccardo Fogliato, Alexandra Chouldechova, Zachary C. Lipton:
The Impact of Algorithmic Risk Assessments on Human Predictions and its Analysis via Crowdsourcing Studies. CoRR abs/2109.01443 (2021) - [i73]Kundan Krishna, Jeffrey P. Bigham, Zachary C. Lipton:
Does Pretraining for Summarization Require Knowledge Transfer? CoRR abs/2109.04953 (2021) - [i72]Anurag Katakkar, Weiqin Wang, Clay H. Yoo, Zachary C. Lipton, Divyansh Kaushik:
Practical Benefits of Feature Feedback Under Distribution Shift. CoRR abs/2110.07566 (2021) - [i71]Saurabh Garg, Yifan Wu, Alex Smola, Sivaraman Balakrishnan, Zachary C. Lipton:
Mixture Proportion Estimation and PU Learning: A Modern Approach. CoRR abs/2111.00980 (2021) - [i70]Siddhant Arora, Danish Pruthi, Norman M. Sadeh, William W. Cohen, Zachary C. Lipton, Graham Neubig:
Explain, Edit, and Understand: Rethinking User Study Design for Evaluating Model Explanations. CoRR abs/2112.09669 (2021) - 2020
- [j5]Jean Kossaifi, Zachary C. Lipton, Arinbjörn Kolbeinsson, Aran Khanna, Tommaso Furlanello, Anima Anandkumar:
Tensor Regression Networks. J. Mach. Learn. Res. 21: 123:1-123:21 (2020) - [c46]Danish Pruthi, Mansi Gupta, Bhuwan Dhingra, Graham Neubig, Zachary C. Lipton:
Learning to Deceive with Attention-Based Explanations. ACL 2020: 4782-4793 - [c45]Sina Fazelpour
, Zachary C. Lipton:
Algorithmic Fairness from a Non-ideal Perspective. AIES 2020: 57-63 - [c44]Helen Zhou
, Cheng Cheng
, Zachary C. Lipton
, George H. Chen
, Jeremy C. Weiss
:
Mortality Risk Score for Critically Ill Patients with Viral or Unspecified Pneumonia: Assisting Clinicians with COVID-19 ECMO Planning. AIME 2020: 336-347 - [c43]Danish Pruthi, Bhuwan Dhingra, Graham Neubig, Zachary C. Lipton:
Weakly- and Semi-supervised Evidence Extraction. EMNLP (Findings) 2020: 3965-3970 - [c42]Zirui Wang, Zachary C. Lipton, Yulia Tsvetkov:
On Negative Interference in Multilingual Models: Findings and A Meta-Learning Treatment. EMNLP (1) 2020: 4438-4450 - [c41]Lee Cohen, Zachary C. Lipton, Yishay Mansour:
Efficient Candidate Screening Under Multiple Tests and Implications for Fairness. FORC 2020: 1:1-1:20 - [c40]Divyansh Kaushik, Eduard H. Hovy, Zachary Chase Lipton:
Learning The Difference That Makes A Difference With Counterfactually-Augmented Data. ICLR 2020 - [c39]Lakshay Chauhan, John Alberg, Zachary C. Lipton:
Uncertainty-Aware Lookahead Factor Models for Quantitative Investing. ICML 2020: 1489-1499 - [c38]Saurabh Garg, Yifan Wu, Sivaraman Balakrishnan, Zachary C. Lipton:
A Unified View of Label Shift Estimation. NeurIPS 2020 - [c37]Nihar B. Shah, Zachary C. Lipton:
SIGMOD 2020 Tutorial on Fairness and Bias in Peer Review and Other Sociotechnical Intelligent Systems. SIGMOD Conference 2020: 2637-2640 - [c36]Zachary C. Lipton:
Machine Learning for Healthcare: Beyond i.i.d. Prediction. HSDM@WSDM 2020: 1 - [i69]Sina Fazelpour, Zachary C. Lipton:
Algorithmic Fairness from a Non-ideal Perspective. CoRR abs/2001.09773 (2020) - [i68]Jacob Tyo, Zachary C. Lipton:
How Transferable are the Representations Learned by Deep Q Agents? CoRR abs/2002.10021 (2020) - [i67]Kyra Gan, Andrew A. Li, Zachary C. Lipton, Sridhar R. Tayur:
Causal Inference With Selectively-Deconfounded Data. CoRR abs/2002.11096 (2020) - [i66]Saurabh Garg, Yifan Wu, Sivaraman Balakrishnan, Zachary C. Lipton:
A Unified View of Label Shift Estimation. CoRR abs/2003.07554 (2020) - [i65]Shantanu Gupta, Zachary C. Lipton, David Childers:
Estimating Treatment Effects with Observed Confounders and Mediators. CoRR abs/2003.11991 (2020) - [i64]Kundan Krishna, Sopan Khosla, Jeffrey P. Bigham, Zachary C. Lipton:
Generating SOAP Notes from Doctor-Patient Conversations. CoRR abs/2005.01795 (2020) - [i63]Helen Zhou, Cheng Cheng, Zachary C. Lipton, George H. Chen, Jeremy C. Weiss:
Predicting Mortality Risk in Viral and Unspecified Pneumonia to Assist Clinicians with COVID-19 ECMO Planning. CoRR abs/2006.01898 (2020) - [i62]Lakshay Chauhan, John Alberg, Zachary C. Lipton:
Uncertainty-Aware Lookahead Factor Models for Quantitative Investing. CoRR abs/2007.04082 (2020) - [i61]Kundan Krishna, Amy Pavel, Benjamin Schloss, Jeffrey P. Bigham, Zachary C. Lipton:
Extracting Structured Data from Physician-Patient Conversations By Predicting Noteworthy Utterances. CoRR abs/2007.07151 (2020) - [i60]