default search action
Aurélien Lucchi
Person information
Refine list
refinements active!
zoomed in on ?? of ?? records
view refined list in
export refined list as
showing all ?? records
2020 – today
- 2024
- [c59]Enea Monzio Compagnoni, Antonio Orvieto, Hans Kersting, Frank Proske, Aurélien Lucchi:
SDEs for Minimax Optimization. AISTATS 2024: 4834-4842 - [c58]Tin Sum Cheng, Aurélien Lucchi, Anastasis Kratsios, David Belius:
Characterizing Overfitting in Kernel Ridgeless Regression Through the Eigenspectrum. ICML 2024 - [c57]Emanuele Francazi, Aurélien Lucchi, Marco Baity-Jesi:
Initial Guessing Bias: How Untrained Networks Favor Some Classes. ICML 2024 - [i60]Tin Sum Cheng, Aurélien Lucchi, Anastasis Kratsios, David Belius:
Characterizing Overfitting in Kernel Ridgeless Regression Through the Eigenspectrum. CoRR abs/2402.01297 (2024) - [i59]Enea Monzio Compagnoni, Antonio Orvieto, Hans Kersting, Frank Norbert Proske, Aurélien Lucchi:
SDEs for Minimax Optimization. CoRR abs/2402.12508 (2024) - [i58]Jim Zhao, Aurélien Lucchi, Nikita Doikov:
Cubic regularized subspace Newton for non-convex optimization. CoRR abs/2406.16666 (2024) - [i57]Rustem Islamov, Niccolò Ajroldi, Antonio Orvieto, Aurélien Lucchi:
Loss Landscape Characterization of Neural Networks without Over-Parametrization. CoRR abs/2410.12455 (2024) - [i56]Tin Sum Cheng, Aurélien Lucchi, Anastasis Kratsios, David Belius:
A Comprehensive Analysis on the Learning Curve in Kernel Ridge Regression. CoRR abs/2410.17796 (2024) - 2023
- [c56]Sotiris Anagnostidis, Aurélien Lucchi, Thomas Hofmann:
Mastering Spatial Graph Prediction of Road Networks. ICCV 2023: 5385-5395 - [c55]Emanuele Francazi, Marco Baity-Jesi, Aurélien Lucchi:
A Theoretical Analysis of the Learning Dynamics under Class Imbalance. ICML 2023: 10285-10322 - [c54]Enea Monzio Compagnoni, Luca Biggio, Antonio Orvieto, Frank Norbert Proske, Hans Kersting, Aurélien Lucchi:
An SDE for Modeling SAM: Theory and Insights. ICML 2023: 25209-25253 - [c53]Sotiris Anagnostidis, Dario Pavllo, Luca Biggio, Lorenzo Noci, Aurélien Lucchi, Thomas Hofmann:
Dynamic Context Pruning for Efficient and Interpretable Autoregressive Transformers. NeurIPS 2023 - [c52]Tin Sum Cheng, Aurélien Lucchi, Anastasis Kratsios, Ivan Dokmanic, David Belius:
A Theoretical Analysis of the Test Error of Finite-Rank Kernel Ridge Regression. NeurIPS 2023 - [i55]Enea Monzio Compagnoni, Luca Biggio, Antonio Orvieto, Frank Norbert Proske, Hans Kersting, Aurélien Lucchi:
An SDE for Modeling SAM: Theory and Insights. CoRR abs/2301.08203 (2023) - [i54]Sotiris Anagnostidis, Dario Pavllo, Luca Biggio, Lorenzo Noci, Aurélien Lucchi, Thomas Hofmann:
Dynamic Context Pruning for Efficient and Interpretable Autoregressive Transformers. CoRR abs/2305.15805 (2023) - [i53]Emanuele Francazi, Aurélien Lucchi, Marco Baity-Jesi:
Initial Guessing Bias: How Untrained Networks Favor Some Classes. CoRR abs/2306.00809 (2023) - [i52]Xuwei Yang, Anastasis Kratsios, Florian Krach, Matheus R. Grasselli, Aurélien Lucchi:
Regret-Optimal Federated Transfer Learning for Kernel Regression with Applications in American Option Pricing. CoRR abs/2309.04557 (2023) - [i51]Tin Sum Cheng, Aurélien Lucchi, Ivan Dokmanic, Anastasis Kratsios, David Belius:
A Theoretical Analysis of the Test Error of Finite-Rank Kernel Ridge Regression. CoRR abs/2310.00987 (2023) - 2022
- [c51]Youssef Diouane, Aurélien Lucchi, Vihang Prakash Patil:
A Globally Convergent Evolutionary Strategy for Stochastic Constrained Optimization with Applications to Reinforcement Learning. AISTATS 2022: 836-859 - [c50]Junchi Yang, Antonio Orvieto, Aurélien Lucchi, Niao He:
Faster Single-loop Algorithms for Minimax Optimization without Strong Concavity. AISTATS 2022: 5485-5517 - [c49]Antonio Orvieto, Jonas Kohler, Dario Pavllo, Thomas Hofmann, Aurélien Lucchi:
Vanishing Curvature in Randomly Initialized Deep ReLU Networks. AISTATS 2022: 7942-7975 - [c48]Gregor Bachmann, Thomas Hofmann, Aurélien Lucchi:
Generalization Through the Lens of Leave-One-Out Error. ICLR 2022 - [c47]Sidak Pal Singh, Aurélien Lucchi, Thomas Hofmann, Bernhard Schölkopf:
Phenomenology of Double Descent in Finite-Width Neural Networks. ICLR 2022 - [c46]Antonio Orvieto, Hans Kersting, Frank Proske, Francis R. Bach, Aurélien Lucchi:
Anticorrelated Noise Injection for Improved Generalization. ICML 2022: 17094-17116 - [c45]Aurélien Lucchi, Frank Proske, Antonio Orvieto, Francis R. Bach, Hans Kersting:
On the Theoretical Properties of Noise Correlation in Stochastic Optimization. NeurIPS 2022 - [c44]Lorenzo Noci, Sotiris Anagnostidis, Luca Biggio, Antonio Orvieto, Sidak Pal Singh, Aurélien Lucchi:
Signal Propagation in Transformers: Theoretical Perspectives and the Role of Rank Collapse. NeurIPS 2022 - [i50]Antonio Orvieto, Hans Kersting, Frank Proske, Francis R. Bach, Aurélien Lucchi:
Anticorrelated Noise Injection for Improved Generalization. CoRR abs/2202.02831 (2022) - [i49]Youssef Diouane, Aurélien Lucchi, Vihang Patil:
A Globally Convergent Evolutionary Strategy for Stochastic Constrained Optimization with Applications to Reinforcement Learning. CoRR abs/2202.10464 (2022) - [i48]Gregor Bachmann, Thomas Hofmann, Aurélien Lucchi:
Generalization Through The Lens Of Leave-One-Out Error. CoRR abs/2203.03443 (2022) - [i47]Sidak Pal Singh, Aurélien Lucchi, Thomas Hofmann, Bernhard Schölkopf:
Phenomenology of Double Descent in Finite-Width Neural Networks. CoRR abs/2203.07337 (2022) - [i46]Lorenzo Noci, Sotiris Anagnostidis, Luca Biggio, Antonio Orvieto, Sidak Pal Singh, Aurélien Lucchi:
Signal Propagation in Transformers: Theoretical Perspectives and the Role of Rank Collapse. CoRR abs/2206.03126 (2022) - [i45]Emanuele Francazi, Marco Baity-Jesi, Aurélien Lucchi:
Characterizing the Effect of Class Imbalance on the Learning Dynamics. CoRR abs/2207.00391 (2022) - [i44]Aurélien Lucchi, Frank Proske, Antonio Orvieto, Francis R. Bach, Hans Kersting:
On the Theoretical Properties of Noise Correlation in Stochastic Optimization. CoRR abs/2209.09162 (2022) - [i43]Sotiris Anagnostidis, Aurélien Lucchi, Thomas Hofmann:
Mastering Spatial Graph Prediction of Road Networks. CoRR abs/2210.00828 (2022) - 2021
- [j8]Nathanaël Perraudin, Sandro Marcon, Aurélien Lucchi, Tomasz Kacprzak:
Emulation of Cosmological Mass Maps with Conditional Generative Adversarial Networks. Frontiers Artif. Intell. 4: 673062 (2021) - [j7]Amira Abbas, David Sutter, Christa Zoufal, Aurélien Lucchi, Alessio Figalli, Stefan Woerner:
The power of quantum neural networks. Nat. Comput. Sci. 1(6): 403-409 (2021) - [j6]Christa Zoufal, Aurélien Lucchi, Stefan Woerner:
Variational quantum Boltzmann machines. Quantum Mach. Intell. 3(1): 1-15 (2021) - [c43]Karolis Martinkus, Aurélien Lucchi, Nathanaël Perraudin:
Scalable Graph Networks for Particle Simulations. AAAI 2021: 8912-8920 - [c42]Foivos Alimisis, Antonio Orvieto, Gary Bécigneul, Aurélien Lucchi:
Momentum Improves Optimization on Riemannian Manifolds. AISTATS 2021: 1351-1359 - [c41]Sotirios-Konstantinos Anagnostidis, Aurélien Lucchi, Youssef Diouane:
Direct-Search for a Class of Stochastic Min-Max Problems. AISTATS 2021: 3772-3780 - [c40]Dario Pavllo, Jonas Kohler, Thomas Hofmann, Aurélien Lucchi:
Learning Generative Models of Textured 3D Meshes from Real-World Images. ICCV 2021: 13859-13869 - [c39]Luca Biggio, Tommaso Bendinelli, Alexander Neitz, Aurélien Lucchi, Giambattista Parascandolo:
Neural Symbolic Regression that scales. ICML 2021: 936-945 - [c38]Aurélien Lucchi, Antonio Orvieto, Adamos Solomou:
On the Second-order Convergence Properties of Random Search Methods. NeurIPS 2021: 25633-25645 - [i42]Sotiris Anagnostidis, Aurélien Lucchi, Youssef Diouane:
Direct-Search for a Class of Stochastic Min-Max Problems. CoRR abs/2102.11386 (2021) - [i41]Paulina Grnarova, Yannic Kilcher, Kfir Y. Levy, Aurélien Lucchi, Thomas Hofmann:
Generative Minimization Networks: Training GANs Without Competition. CoRR abs/2103.12685 (2021) - [i40]Dario Pavllo, Jonas Kohler, Thomas Hofmann, Aurélien Lucchi:
Learning Generative Models of Textured 3D Meshes from Real-World Images. CoRR abs/2103.15627 (2021) - [i39]Antonio Orvieto, Jonas Kohler, Dario Pavllo, Thomas Hofmann, Aurélien Lucchi:
Vanishing Curvature and the Power of Adaptive Methods in Randomly Initialized Deep Networks. CoRR abs/2106.03763 (2021) - [i38]Luca Biggio, Tommaso Bendinelli, Alexander Neitz, Aurélien Lucchi, Giambattista Parascandolo:
Neural Symbolic Regression that Scales. CoRR abs/2106.06427 (2021) - [i37]Aurélien Lucchi, Antonio Orvieto, Adamos Solomou:
On the Second-order Convergence Properties of Random Search Methods. CoRR abs/2110.13265 (2021) - [i36]Junchi Yang, Antonio Orvieto, Aurélien Lucchi, Niao He:
Faster Single-loop Algorithms for Minimax Optimization without Strong Concavity. CoRR abs/2112.05604 (2021) - 2020
- [c37]Foivos Alimisis, Antonio Orvieto, Gary Bécigneul, Aurélien Lucchi:
A Continuous-time Perspective for Modeling Acceleration in Riemannian Optimization. AISTATS 2020: 1297-1307 - [c36]Dario Pavllo, Aurélien Lucchi, Thomas Hofmann:
Controlling Style and Semantics in Weakly-Supervised Image Generation. ECCV (6) 2020: 482-499 - [c35]Yuwen Chen, Antonio Orvieto, Aurélien Lucchi:
An Accelerated DFO Algorithm for Finite-sum Convex Functions. ICML 2020: 1681-1690 - [c34]Celestine Mendler-Dünner, Aurélien Lucchi:
Randomized Block-Diagonal Preconditioning for Parallel Learning. ICML 2020: 6841-6851 - [c33]Hadi Daneshmand, Jonas Moritz Kohler, Francis R. Bach, Thomas Hofmann, Aurélien Lucchi:
Batch normalization provably avoids ranks collapse for randomly initialised deep networks. NeurIPS 2020 - [c32]Dario Pavllo, Graham Spinks, Thomas Hofmann, Marie-Francine Moens, Aurélien Lucchi:
Convolutional Generation of Textured 3D Meshes. NeurIPS 2020 - [i35]Hadi Daneshmand, Jonas Moritz Kohler, Francis R. Bach, Thomas Hofmann, Aurélien Lucchi:
Theoretical Understanding of Batch-normalization: A Markov Chain Perspective. CoRR abs/2003.01652 (2020) - [i34]Nathanaël Perraudin, Sandro Marcon, Aurélien Lucchi, Tomasz Kacprzak:
Emulation of cosmological mass maps with conditional generative adversarial networks. CoRR abs/2004.08139 (2020) - [i33]Dario Pavllo, Graham Spinks, Thomas Hofmann, Marie-Francine Moens, Aurélien Lucchi:
Convolutional Generation of Textured 3D Meshes. CoRR abs/2006.07660 (2020) - [i32]Celestine Mendler-Dünner, Aurélien Lucchi:
Randomized Block-Diagonal Preconditioning for Parallel Learning. CoRR abs/2006.13591 (2020) - [i31]Yuwen Chen, Antonio Orvieto, Aurélien Lucchi:
An Accelerated DFO Algorithm for Finite-sum Convex Functions. CoRR abs/2007.03311 (2020) - [i30]Karolis Martinkus, Aurélien Lucchi, Nathanaël Perraudin:
Scalable Graph Networks for Particle Simulations. CoRR abs/2010.06948 (2020) - [i29]Amira Abbas, David Sutter, Christa Zoufal, Aurélien Lucchi, Alessio Figalli, Stefan Woerner:
The power of quantum neural networks. CoRR abs/2011.00027 (2020)
2010 – 2019
- 2019
- [c31]Leonard Adolphs, Hadi Daneshmand, Aurélien Lucchi, Thomas Hofmann:
Local Saddle Point Optimization: A Curvature Exploitation Approach. AISTATS 2019: 486-495 - [c30]Jonas Moritz Kohler, Hadi Daneshmand, Aurélien Lucchi, Thomas Hofmann, Ming Zhou, Klaus Neymeyr:
Exponential convergence rates for Batch Normalization: The power of length-direction decoupling in non-convex optimization. AISTATS 2019: 806-815 - [c29]Zuoyue Li, Jan Dirk Wegner, Aurélien Lucchi:
Topological Map Extraction From Overhead Images. ICCV 2019: 1715-1724 - [c28]Paulina Grnarova, Kfir Y. Levy, Aurélien Lucchi, Nathanaël Perraudin, Ian Goodfellow, Thomas Hofmann, Andreas Krause:
A Domain Agnostic Measure for Monitoring and Evaluating GANs. NeurIPS 2019: 12069-12079 - [c27]Antonio Orvieto, Aurélien Lucchi:
Continuous-time Models for Stochastic Optimization Algorithms. NeurIPS 2019: 12589-12601 - [c26]Antonio Orvieto, Aurélien Lucchi:
Shadowing Properties of Optimization Algorithms. NeurIPS 2019: 12671-12682 - [c25]Antonio Orvieto, Jonas Kohler, Aurélien Lucchi:
The Role of Memory in Stochastic Optimization. UAI 2019: 356-366 - [i28]Leonard Adolphs, Jonas Kohler, Aurélien Lucchi:
Ellipsoidal Trust Region Methods and the Marginal Value of Hessian Information for Neural Network Training. CoRR abs/1905.09201 (2019) - [i27]Antonio Orvieto, Jonas Kohler, Aurélien Lucchi:
The Role of Memory in Stochastic Optimization. CoRR abs/1907.01678 (2019) - [i26]Nathanaël Perraudin, Ankit Srivastava, Aurélien Lucchi, Tomasz Kacprzak, Thomas Hofmann, Alexandre Réfrégier:
Cosmological N-body simulations: a challenge for scalable generative models. CoRR abs/1908.05519 (2019) - [i25]Antonio Orvieto, Aurélien Lucchi:
Shadowing Properties of Optimization Algorithms. CoRR abs/1911.05206 (2019) - [i24]Aurélien Lucchi, Jonas Kohler:
A Stochastic Tensor Method for Non-convex Optimization. CoRR abs/1911.10367 (2019) - [i23]Dario Pavllo, Aurélien Lucchi, Thomas Hofmann:
Controlling Style and Semantics in Weakly-Supervised Image Generation. CoRR abs/1912.03161 (2019) - 2018
- [c24]Paulina Grnarova, Kfir Y. Levy, Aurélien Lucchi, Thomas Hofmann, Andreas Krause:
An Online Learning Approach to Generative Adversarial Networks. ICLR (Poster) 2018 - [c23]Yannic Kilcher, Aurélien Lucchi, Thomas Hofmann:
Semantic Interpolation in Implicit Models. ICLR (Poster) 2018 - [c22]Hadi Daneshmand, Jonas Moritz Kohler, Aurélien Lucchi, Thomas Hofmann:
Escaping Saddles with Stochastic Gradients. ICML 2018: 1163-1172 - [c21]Celestine Dünner, Aurélien Lucchi, Matilde Gargiani, An Bian, Thomas Hofmann, Martin Jaggi:
A Distributed Second-Order Algorithm You Can Trust. ICML 2018: 1357-1365 - [i22]Hadi Daneshmand, Jonas Moritz Kohler, Aurélien Lucchi, Thomas Hofmann:
Escaping Saddles with Stochastic Gradients. CoRR abs/1803.05999 (2018) - [i21]Leonard Adolphs, Hadi Daneshmand, Aurélien Lucchi, Thomas Hofmann:
Local Saddle Point Optimization: A Curvature Exploitation Approach. CoRR abs/1805.05751 (2018) - [i20]Kevin Roth, Aurélien Lucchi, Sebastian Nowozin, Thomas Hofmann:
Adversarially Robust Training through Structured Gradient Regularization. CoRR abs/1805.08736 (2018) - [i19]Jonas Moritz Kohler, Hadi Daneshmand, Aurélien Lucchi, Ming Zhou, Klaus Neymeyr, Thomas Hofmann:
Towards a Theoretical Understanding of Batch Normalization. CoRR abs/1805.10694 (2018) - [i18]Celestine Dünner, Aurélien Lucchi, Matilde Gargiani, An Bian, Thomas Hofmann, Martin Jaggi:
A Distributed Second-Order Algorithm You Can Trust. CoRR abs/1806.07569 (2018) - [i17]Antonio Orvieto, Aurélien Lucchi:
Continuous-time Models for Stochastic Optimization Algorithms. CoRR abs/1810.02565 (2018) - [i16]Paulina Grnarova, Kfir Y. Levy, Aurélien Lucchi, Nathanaël Perraudin, Thomas Hofmann, Andreas Krause:
Evaluating GANs via Duality. CoRR abs/1811.05512 (2018) - [i15]Zuoyue Li, Jan Dirk Wegner, Aurélien Lucchi:
PolyMapper: Extracting City Maps using Polygons. CoRR abs/1812.01497 (2018) - 2017
- [j5]Joël Akeret, Chihway L. Chang, Aurélien Lucchi, Alexandre Réfrégier:
Radio frequency interference mitigation using deep convolutional neural networks. Astron. Comput. 18: 35-39 (2017) - [j4]Pascal Kaiser, Jan Dirk Wegner, Aurélien Lucchi, Martin Jaggi, Thomas Hofmann, Konrad Schindler:
Learning Aerial Image Segmentation From Online Maps. IEEE Trans. Geosci. Remote. Sens. 55(11): 6054-6068 (2017) - [c20]Jonas Moritz Kohler, Aurélien Lucchi:
Sub-sampled Cubic Regularization for Non-convex Optimization. ICML 2017: 1895-1904 - [c19]Kevin Roth, Aurélien Lucchi, Sebastian Nowozin, Thomas Hofmann:
Stabilizing Training of Generative Adversarial Networks through Regularization. NIPS 2017: 2018-2028 - [c18]Jan Deriu, Aurélien Lucchi, Valeria De Luca, Aliaksei Severyn, Simon Müller, Mark Cieliebak, Thomas Hofmann, Martin Jaggi:
Leveraging Large Amounts of Weakly Supervised Data for Multi-Language Sentiment Classification. WWW 2017: 1045-1052 - [i14]Jan Deriu, Aurélien Lucchi, Valeria De Luca, Aliaksei Severyn, Simon Müller, Mark Cieliebak, Thomas Hofmann, Martin Jaggi:
Leveraging Large Amounts of Weakly Supervised Data for Multi-Language Sentiment Classification. CoRR abs/1703.02504 (2017) - [i13]Jonas Moritz Kohler, Aurélien Lucchi:
Sub-sampled Cubic Regularization for Non-convex Optimization. CoRR abs/1705.05933 (2017) - [i12]Kevin Roth, Aurélien Lucchi, Sebastian Nowozin, Thomas Hofmann:
Stabilizing Training of Generative Adversarial Networks through Regularization. CoRR abs/1705.09367 (2017) - [i11]Paulina Grnarova, Kfir Y. Levy, Aurélien Lucchi, Thomas Hofmann, Andreas Krause:
An Online Learning Approach to Generative Adversarial Networks. CoRR abs/1706.03269 (2017) - [i10]Pascal Kaiser, Jan Dirk Wegner, Aurélien Lucchi, Martin Jaggi, Thomas Hofmann, Konrad Schindler:
Learning Aerial Image Segmentation from Online Maps. CoRR abs/1707.06879 (2017) - [i9]Yannic Kilcher, Aurélien Lucchi, Thomas Hofmann:
Generator Reversal. CoRR abs/1707.09241 (2017) - [i8]Yannic Kilcher, Aurélien Lucchi, Thomas Hofmann:
Semantic Interpolation in Implicit Models. CoRR abs/1710.11381 (2017) - [i7]Yannic Kilcher, Aurélien Lucchi, Thomas Hofmann:
Flexible Prior Distributions for Deep Generative Models. CoRR abs/1710.11383 (2017) - 2016
- [c17]Hadi Daneshmand, Aurélien Lucchi, Thomas Hofmann:
Starting Small - Learning with Adaptive Sample Sizes. ICML 2016: 1463-1471 - [c16]Aryan Mokhtari, Hadi Daneshmand, Aurélien Lucchi, Thomas Hofmann, Alejandro Ribeiro:
Adaptive Newton Method for Empirical Risk Minimization to Statistical Accuracy. NIPS 2016: 4062-4070 - [c15]Jan Deriu, Maurice Gonzenbach, Fatih Uzdilli, Aurélien Lucchi, Valeria De Luca, Martin Jaggi:
SwissCheese at SemEval-2016 Task 4: Sentiment Classification Using an Ensemble of Convolutional Neural Networks with Distant Supervision. SemEval@NAACL-HLT 2016: 1124-1128 - [c14]Octavian-Eugen Ganea, Marina Ganea, Aurélien Lucchi, Carsten Eickhoff, Thomas Hofmann:
Probabilistic Bag-Of-Hyperlinks Model for Entity Linking. WWW 2016: 927-938 - [i6]Hadi Daneshmand, Aurélien Lucchi, Thomas Hofmann:
Starting Small - Learning with Adaptive Sample Sizes. CoRR abs/1603.02839 (2016) - [i5]Hadi Daneshmand, Aurélien Lucchi, Thomas Hofmann:
DynaNewton - Accelerating Newton's Method for Machine Learning. CoRR abs/1605.06561 (2016) - [i4]Wenhu Chen, Aurélien Lucchi, Thomas Hofmann:
Bootstrap, Review, Decode: Using Out-of-Domain Textual Data to Improve Image Captioning. CoRR abs/1611.05321 (2016) - 2015
- [j3]Aurélien Lucchi, Pablo Márquez-Neila, Carlos J. Becker, Yunpeng Li, Kevin Smith, Graham Knott, Pascal Fua:
Learning Structured Models for Segmentation of 2-D and 3-D Imagery. IEEE Trans. Medical Imaging 34(5): 1096-1110 (2015) - [c13]Thomas Hofmann, Aurélien Lucchi, Simon Lacoste-Julien, Brian McWilliams:
Variance Reduced Stochastic Gradient Descent with Neighbors. NIPS 2015: 2305-2313 - [i3]Aurélien Lucchi, Brian McWilliams, Thomas Hofmann:
A Variance Reduced Stochastic Newton Method. CoRR abs/1503.08316 (2015) - [i2]Thomas Hofmann, Aurélien Lucchi, Brian McWilliams:
Neighborhood Watch: Stochastic Gradient Descent with Neighbors. CoRR abs/1506.03662 (2015) - [i1]Octavian-Eugen Ganea, Marina Horlescu, Aurélien Lucchi, Carsten Eickhoff, Thomas Hofmann:
Probabilistic Bag-Of-Hyperlinks Model for Entity Linking. CoRR abs/1509.02301 (2015) - 2014
- [c12]Aurélien Lucchi, Carlos J. Becker, Pablo Márquez-Neila, Pascal Fua:
Exploiting Enclosing Membranes and Contextual Cues for Mitochondria Segmentation. MICCAI (1) 2014: 65-72 - 2013
- [b1]Aurélien Lucchi:
Learning Discriminative Features and Structured Models for Segmentation in Microscopy and Natural Images. EPFL, Switzerland, 2013 - [c11]Aurélien Lucchi, Yunpeng Li, Pascal Fua:
Learning for Structured Prediction Using Approximate Subgradient Descent with Working Sets. CVPR 2013: 1987-1994 - [c10]Raphael Sznitman, Aurélien Lucchi, Peter I. Frazier, Bruno Jedynak, Pascal Fua:
An Optimal Policy for Target Localization with Application to Electron Microscopy. ICML (1) 2013: 1-9 - [c9]Raphael Sznitman, Aurélien Lucchi, Marco Cantoni, Graham Knott, Pascal Fua:
Flash Scanning Electron Microscopy. MICCAI (3) 2013: 413-420 - 2012
- [j2]Radhakrishna Achanta, Appu Shaji, Kevin Smith, Aurélien Lucchi, Pascal Fua, Sabine Süsstrunk:
SLIC Superpixels Compared to State-of-the-Art Superpixel Methods. IEEE Trans. Pattern Anal. Mach. Intell. 34(11): 2274-2282 (2012) - [j1]Aurélien Lucchi, Kevin Smith, Radhakrishna Achanta, Graham Knott, Pascal Fua:
Supervoxel-Based Segmentation of Mitochondria in EM Image Stacks With Learned Shape Features. IEEE Trans. Medical Imaging 31(2): 474-486 (2012) - [c8]