
Tal Ben-Nun
Refine list

refinements active!
zoomed in on ?? of ?? records
view refined list in
export refined list as
2020 – today
- 2020
- [j6]Tal Ben-Nun, Michael Sutton, Sreepathi Pai, Keshav Pingali:
Groute: Asynchronous Multi-GPU Programming Model with Applications to Large-scale Graph Processing. ACM Trans. Parallel Comput. 7(3): 18:1-18:27 (2020) - [j5]Maciej Besta, Marc Fischer, Tal Ben-Nun, Dimitri Stanojevic, Johannes de Fine Licht, Torsten Hoefler:
Substream-Centric Maximum Matchings on FPGA. ACM Trans. Reconfigurable Technol. Syst. 13(2): 8:1-8:33 (2020) - [c15]Elad Hoffer, Tal Ben-Nun, Itay Hubara, Niv Giladi, Torsten Hoefler, Daniel Soudry:
Augment Your Batch: Improving Generalization Through Instance Repetition. CVPR 2020: 8126-8135 - [c14]Shigang Li, Tal Ben-Nun, Salvatore Di Girolamo, Dan Alistarh, Torsten Hoefler:
Taming unbalanced training workloads in deep learning with partial collective operations. PPoPP 2020: 45-61 - [i22]Chris Cummins, Zacharias V. Fisches, Tal Ben-Nun, Torsten Hoefler, Hugh Leather:
ProGraML: Graph-based Deep Learning for Program Optimization and Analysis. CoRR abs/2003.10536 (2020) - [i21]Shigang Li, Tal Ben-Nun, Dan Alistarh, Salvatore Di Girolamo, Nikoli Dryden, Torsten Hoefler:
Breaking (Global) Barriers in Parallel Stochastic Optimization with Wait-Avoiding Group Averaging. CoRR abs/2005.00124 (2020) - [i20]Peter Grönquist, Chengyuan Yao, Tal Ben-Nun, Nikoli Dryden, Peter Dueben, Shigang Li, Torsten Hoefler:
Deep Learning for Post-Processing Ensemble Weather Forecasts. CoRR abs/2005.08748 (2020) - [i19]Andrei Ivanov, Nikoli Dryden, Tal Ben-Nun, Shigang Li, Torsten Hoefler:
Data Movement Is All You Need: A Case Study on Optimizing Transformers. CoRR abs/2007.00072 (2020) - [i18]Grzegorz Kwasniewski, Tal Ben-Nun, Alexandros Nikolaos Ziogas, Timo Schneider, Maciej Besta, Torsten Hoefler:
On the Parallel I/O Optimality of Linear Algebra Kernels: Near-Optimal LU Factorization. CoRR abs/2010.05975 (2020) - [i17]Maciej Besta, Marc Fischer, Tal Ben-Nun, Dimitri Stanojevic, Johannes de Fine Licht, Torsten Hoefler:
Substream-Centric Maximum Matchings on FPGA. CoRR abs/2010.14684 (2020) - [i16]Johannes de Fine Licht, Andreas Kuster, Tiziano De Matteis, Tal Ben-Nun, Dominic Hofer, Torsten Hoefler:
StencilFlow: Mapping Large Stencil Programs to Distributed Spatial Computing Systems. CoRR abs/2010.15218 (2020) - [i15]Tal Ben-Nun, Lukas Gianinazzi, Torsten Hoefler, Yishai Oltchik:
Parametric Graph Templates: Properties and Algorithms. CoRR abs/2011.07001 (2020) - [i14]Chris Cummins, Hugh Leather, Zacharias V. Fisches, Tal Ben-Nun, Torsten Hoefler, Michael F. P. O'Boyle:
Deep Data Flow Analysis. CoRR abs/2012.01470 (2020)
2010 – 2019
- 2019
- [j4]Tal Ben-Nun, Torsten Hoefler:
Demystifying Parallel and Distributed Deep Learning: An In-depth Concurrency Analysis. ACM Comput. Surv. 52(4): 65:1-65:43 (2019) - [c13]Maciej Besta, Marc Fischer, Tal Ben-Nun, Johannes de Fine Licht, Torsten Hoefler:
Substream-Centric Maximum Matchings on FPGA. FPGA 2019: 152-161 - [c12]Tal Ben-Nun, Maciej Besta, Simon Huber, Alexandros Nikolaos Ziogas, Daniel Peter, Torsten Hoefler:
A Modular Benchmarking Infrastructure for High-Performance and Reproducible Deep Learning. IPDPS 2019: 66-77 - [c11]Alexandros Nikolaos Ziogas, Tal Ben-Nun, Guillermo Indalecio Fernández, Timo Schneider, Mathieu Luisier, Torsten Hoefler:
A data-centric approach to extreme-scale ab initio dissipative quantum transport simulations. SC 2019: 1:1-1:13 - [c10]Alexandros Nikolaos Ziogas, Tal Ben-Nun, Guillermo Indalecio Fernández, Timo Schneider, Mathieu Luisier, Torsten Hoefler:
Optimizing the data movement in quantum transport simulations via data-centric parallel programming. SC 2019: 78:1-78:17 - [c9]Tal Ben-Nun, Johannes de Fine Licht, Alexandros Nikolaos Ziogas, Timo Schneider, Torsten Hoefler:
Stateful dataflow multigraphs: a data-centric model for performance portability on heterogeneous architectures. SC 2019: 81:1-81:14 - [i13]Elad Hoffer, Tal Ben-Nun, Itay Hubara, Niv Giladi, Torsten Hoefler, Daniel Soudry:
Augment your batch: better training with larger batches. CoRR abs/1901.09335 (2019) - [i12]Tal Ben-Nun, Maciej Besta, Simon Huber, Alexandros Nikolaos Ziogas, Daniel Peter, Torsten Hoefler:
A Modular Benchmarking Infrastructure for High-Performance and Reproducible Deep Learning. CoRR abs/1901.10183 (2019) - [i11]Tal Ben-Nun, Johannes de Fine Licht, Alexandros Nikolaos Ziogas, Timo Schneider, Torsten Hoefler:
Stateful Dataflow Multigraphs: A Data-Centric Model for High-Performance Parallel Programs. CoRR abs/1902.10345 (2019) - [i10]Maciej Besta, Dimitri Stanojevic, Johannes de Fine Licht, Tal Ben-Nun, Torsten Hoefler:
Graph Processing on FPGAs: Taxonomy, Survey, Challenges. CoRR abs/1903.06697 (2019) - [i9]Shigang Li, Tal Ben-Nun, Salvatore Di Girolamo, Dan Alistarh, Torsten Hoefler:
Taming Unbalanced Training Workloads in Deep Learning with Partial Collective Operations. CoRR abs/1908.04207 (2019) - [i8]Elad Hoffer, Berry Weinstein, Itay Hubara, Tal Ben-Nun, Torsten Hoefler, Daniel Soudry:
Mix & Match: training convnets with mixed image sizes for improved accuracy, speed and scale resiliency. CoRR abs/1908.08986 (2019) - [i7]Peter Grönquist, Tal Ben-Nun, Nikoli Dryden, Peter Dueben, Luca Lavarini, Shigang Li, Torsten Hoefler:
Predicting Weather Uncertainty with Deep Convnets. CoRR abs/1911.00630 (2019) - [i6]Alexandros Nikolaos Ziogas, Tal Ben-Nun, Guillermo Indalecio Fernández, Timo Schneider, Mathieu Luisier, Torsten Hoefler:
Optimizing the Data Movement in Quantum Transport Simulations via Data-Centric Parallel Programming. CoRR abs/1912.08810 (2019) - [i5]Alexandros Nikolaos Ziogas, Tal Ben-Nun, Guillermo Indalecio Fernández, Timo Schneider, Mathieu Luisier, Torsten Hoefler:
A Data-Centric Approach to Extreme-Scale Ab initio Dissipative Quantum Transport Simulations. CoRR abs/1912.10024 (2019) - 2018
- [c8]Yosuke Oyama, Tal Ben-Nun, Torsten Hoefler, Satoshi Matsuoka:
Accelerating Deep Learning Frameworks with Micro-Batches. CLUSTER 2018: 402-412 - [c7]Michael Sutton, Tal Ben-Nun, Amnon Barak:
Optimizing Parallel Graph Connectivity Computation via Subgraph Sampling. IPDPS 2018: 12-21 - [c6]Tal Ben-Nun, Alice Shoshana Jakobovits, Torsten Hoefler:
Neural Code Comprehension: A Learnable Representation of Code Semantics. NeurIPS 2018: 3589-3601 - [i4]Tal Ben-Nun, Torsten Hoefler:
Demystifying Parallel and Distributed Deep Learning: An In-Depth Concurrency Analysis. CoRR abs/1802.09941 (2018) - [i3]Yosuke Oyama, Tal Ben-Nun, Torsten Hoefler, Satoshi Matsuoka:
μ-cuDNN: Accelerating Deep Learning Frameworks with Micro-Batching. CoRR abs/1804.04806 (2018) - [i2]Tal Ben-Nun, Alice Shoshana Jakobovits, Torsten Hoefler:
Neural Code Comprehension: A Learnable Representation of Code Semantics. CoRR abs/1806.07336 (2018) - 2017
- [c5]Tomas Karnagel, Tal Ben-Nun, Matthias Werner, Dirk Habich, Wolfgang Lehner:
Big data causing big (TLB) problems: taming random memory accesses on the GPU. DaMoN 2017: 6:1-6:10 - [c4]Tal Ben-Nun, Michael Sutton, Sreepathi Pai
, Keshav Pingali:
Groute: An Asynchronous Multi-GPU Programming Model for Irregular Computations. PPOPP 2017: 235-248 - 2016
- [j3]Avi Ginsburg, Tal Ben-Nun, Roi Asor, Asaf Shemesh, Israel Ringel, Uri Raviv:
Reciprocal Grids: A Hierarchical Algorithm for Computing Solution X-ray Scattering Curves from Supramolecular Complexes at High Resolution. J. Chem. Inf. Model. 56(8): 1518-1527 (2016) - [j2]Tal Ben-Nun, Amnon Barak, Uri Raviv:
Spline-based parallel nonlinear optimization of function sequences. J. Parallel Distributed Comput. 93-94: 132-145 (2016) - [p1]Carsten Weinhold, Adam Lackorzynski, Jan Bierbaum, Martin Küttler, Maksym Planeta, Hermann Härtig, Amnon Shiloh, Ely Levy, Tal Ben-Nun, Amnon Barak, Thomas Steinke, Thorsten Schütt, Jan Fajerski, Alexander Reinefeld, Matthias Lieber
, Wolfgang E. Nagel:
FFMK: A Fast and Fault-Tolerant Microkernel-Based System for Exascale Computing. Software for Exascale Computing 2016: 405-426 - [i1]Michael Sutton, Tal Ben-Nun, Amnon Barak, Sreepathi Pai, Keshav Pingali:
Adaptive Work-Efficient Connected Components on the GPU. CoRR abs/1612.01178 (2016) - 2015
- [c3]Tal Ben-Nun, Ely Levy, Amnon Barak, Eri Rubin:
Memory access patterns: the missing piece of the multi-GPU puzzle. SC 2015: 19:1-19:12 - 2014
- [j1]Eri Rubin, Ely Levy, Amnon Barak, Tal Ben-Nun:
MAPS: Optimizing Massively Parallel Applications Using Device-Level Memory Abstraction. ACM Trans. Archit. Code Optim. 11(4): 44:1-44:22 (2014) - 2010
- [c2]Tal Ben-Nun, Yoav Etsion, Dror G. Feitelson
:
Design and implementation of a generic resource sharing virtual time dispatcher. SYSTOR 2010
2000 – 2009
- 2009
- [c1]Yoav Etsion, Tal Ben-Nun, Dror G. Feitelson
:
A global scheduling framework for virtualization environments. IPDPS 2009: 1-8
Coauthor Index

manage site settings
To protect your privacy, all features that rely on external API calls from your browser are turned off by default. You need to opt-in for them to become active. All settings here will be stored as cookies with your web browser. For more information see our F.A.Q.
Unpaywalled article links
Add open access links from to the list of external document links (if available).
Privacy notice: By enabling the option above, your browser will contact the API of unpaywall.org to load hyperlinks to open access articles. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Unpaywall privacy policy.
Archived links via Wayback Machine
For web page which are no longer available, try to retrieve content from the of the Internet Archive (if available).
load content from web.archive.org
Privacy notice: By enabling the option above, your browser will contact the API of web.archive.org to check for archived content of web pages that are no longer available. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Internet Archive privacy policy.
Reference lists
Add a list of references from ,
, and
to record detail pages.
load references from crossref.org and opencitations.net
Privacy notice: By enabling the option above, your browser will contact the APIs of crossref.org, opencitations.net, and semanticscholar.org to load article reference information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Crossref privacy policy and the OpenCitations privacy policy, as well as the AI2 Privacy Policy covering Semantic Scholar.
Citation data
Add a list of citing articles from and
to record detail pages.
load citations from opencitations.net
Privacy notice: By enabling the option above, your browser will contact the API of opencitations.net and semanticscholar.org to load citation information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the OpenCitations privacy policy as well as the AI2 Privacy Policy covering Semantic Scholar.
Tweets on dblp homepage
Show tweets from on the dblp homepage.
Privacy notice: By enabling the option above, your browser will contact twitter.com and twimg.com to load tweets curated by our Twitter account. At the same time, Twitter will persistently store several cookies with your web browser. While we did signal Twitter to not track our users by setting the "dnt" flag, we do not have any control over how Twitter uses your data. So please proceed with care and consider checking the Twitter privacy policy.
last updated on 2021-01-23 00:51 CET by the dblp team
all metadata released as open data under CC0 1.0 license
see also: Terms of Use | Privacy Policy | Imprint