


Остановите войну!
for scientists:


default search action
Ser-Nam Lim
Ser Nam Lim – Sernam Lim
Person information

- affiliation: Facebook AI, New York, NY, USA
- affiliation: Avitas Systems, GE Venture, Boston, MA, USA
- affiliation: GE Global Research, Niskayuna, NY, USA
- affiliation: Cognex Corp., Natick, MA, USA
- affiliation (PhD 2006): University of Maryland, College Park, MD, USA
Refine list

refinements active!
zoomed in on ?? of ?? records
view refined list in
export refined list as
showing all ?? records
2020 – today
- 2023
- [i71]Seonguk Seo, Mustafa Gökhan Uzunbas, Bohyung Han, Sara Cao, Joena Zhang, Tai-Peng Tian, Ser-Nam Lim:
Online Backfilling with No Regret for Large-Scale Image Retrieval. CoRR abs/2301.03767 (2023) - 2022
- [c63]Boyi Li, Serge J. Belongie, Ser-Nam Lim, Abe Davis:
Neural Image Recolorization for Creative Domains. CVPR Workshops 2022: 2225-2229 - [c62]Junke Wang, Zuxuan Wu, Jingjing Chen, Xintong Han, Abhinav Shrivastava, Ser-Nam Lim, Yu-Gang Jiang:
ObjectFormer for Image Manipulation Detection and Localization. CVPR 2022: 2354-2363 - [c61]Lingchen Meng, Hengduo Li, Bor-Chun Chen, Shiyi Lan, Zuxuan Wu, Yu-Gang Jiang, Ser-Nam Lim:
AdaViT: Adaptive Vision Transformers for Efficient Image Recognition. CVPR 2022: 12299-12308 - [c60]Jingwei Ma, Lucy Chai, Minyoung Huh, Tongzhou Wang, Ser-Nam Lim, Phillip Isola, Antonio Torralba:
Totems: Physical Objects for Verifying Visual Integrity. ECCV (14) 2022: 164-180 - [c59]Zihang Meng, David Yang, Xuefei Cao, Ashish Shah, Ser-Nam Lim:
Object-Centric Unsupervised Image Captioning. ECCV (36) 2022: 219-235 - [c58]Xiaogang Xu, Hengshuang Zhao, Vibhav Vineet, Ser-Nam Lim, Antonio Torralba:
MTFormer: Multi-task Learning via Transformer and Cross-Task Reasoning. ECCV (27) 2022: 304-321 - [c57]Tohar Lukov, Na Zhao, Gim Hee Lee, Ser-Nam Lim:
Teaching with Soft Label Smoothing for Mitigating Noisy Labels in Facial Expressions. ECCV (12) 2022: 648-665 - [c56]Menglin Jia, Luming Tang, Bor-Chun Chen, Claire Cardie, Serge J. Belongie, Bharath Hariharan, Ser-Nam Lim:
Visual Prompt Tuning. ECCV (33) 2022: 709-727 - [i70]A. Tuan Nguyen, Ser Nam Lim, Philip H. S. Torr:
Task-Agnostic Robust Representation Learning. CoRR abs/2203.07596 (2022) - [i69]Menglin Jia, Luming Tang, Bor-Chun Chen, Claire Cardie, Serge J. Belongie, Bharath Hariharan, Ser-Nam Lim:
Visual Prompt Tuning. CoRR abs/2203.12119 (2022) - [i68]Junke Wang, Zuxuan Wu, Jingjing Chen, Xintong Han, Abhinav Shrivastava, Ser-Nam Lim, Yu-Gang Jiang:
ObjectFormer for Image Manipulation Detection and Localization. CoRR abs/2203.14681 (2022) - [i67]Kennard Ng, Ser-Nam Lim, Gim Hee Lee:
VRAG: Region Attention Graphs for Content-Based Video Retrieval. CoRR abs/2205.09068 (2022) - [i66]Kai Sheng Tai, Tai-Peng Tian, Ser-Nam Lim:
Spartan: Differentiable Sparsity via Regularized Transportation. CoRR abs/2205.14107 (2022) - [i65]Francesco Pinto, Harry Yang, Ser-Nam Lim, Philip H. S. Torr, Puneet K. Dokania:
RegMixup: Mixup as a Regularizer Can Surprisingly Improve Accuracy and Out Distribution Robustness. CoRR abs/2206.14502 (2022) - [i64]Tom Joy, Francesco Pinto, Ser-Nam Lim, Philip H. S. Torr, Puneet K. Dokania:
Sample-dependent Adaptive Temperature Scaling for Improved Calibration. CoRR abs/2207.06211 (2022) - [i63]Yongming Rao, Wenliang Zhao, Yansong Tang, Jie Zhou, Ser-Nam Lim, Jiwen Lu:
HorNet: Efficient High-Order Spatial Interactions with Recursive Gated Convolutions. CoRR abs/2207.14284 (2022) - [i62]Kevin Musgrave, Serge J. Belongie, Ser-Nam Lim:
Benchmarking Validation Methods for Unsupervised Domain Adaptation. CoRR abs/2208.07360 (2022) - [i61]Jishnu Mukhoti, Tsung-Yu Lin, Bor-Chun Chen, Ashish Shah, Philip H. S. Torr, Puneet K. Dokania, Ser-Nam Lim:
Raising the Bar on the Evaluation of Out-of-Distribution Detection. CoRR abs/2209.11960 (2022) - [i60]Jingwei Ma, Lucy Chai, Minyoung Huh, Tongzhou Wang, Ser-Nam Lim, Phillip Isola, Antonio Torralba:
Totems: Physical Objects for Verifying Visual Integrity. CoRR abs/2209.13032 (2022) - [i59]Botos Csaba, Adel Bibi, Yanwei Li, Philip Torr, Ser-Nam Lim:
Diversified Dynamic Routing for Vision Tasks. CoRR abs/2209.13071 (2022) - [i58]Yifei Zhou, Renyu Li, Hayden Housen, Ser-Nam Lim:
GAPX: Generalized Autoregressive Paraphrase-Identification X. CoRR abs/2210.01979 (2022) - [i57]Yifei Zhou, Zilu Li, Abhinav Shrivastava, Hengshuang Zhao, Antonio Torralba, Tai-Peng Tian, Ser-Nam Lim:
BT2: Backward-compatible Training with Basis Transformation. CoRR abs/2211.03989 (2022) - [i56]Hao Chen, Matthew Gwilliam, Bo He, Ser-Nam Lim, Abhinav Shrivastava:
CNeRV: Content-adaptive Neural Representation for Visual Data. CoRR abs/2211.10421 (2022) - [i55]Peirong Liu, Rui Wang, Pengchuan Zhang, Omid Poursaeed, Yipin Zhou, Xuefei Cao, Sreya Dutta Roy, Ashish Shah, Ser-Nam Lim:
A Unified Model for Tracking and Image-Video Detection Has More Power. CoRR abs/2211.11077 (2022) - [i54]Kevin Musgrave, Serge J. Belongie, Ser-Nam Lim:
PyTorch Adapt. CoRR abs/2211.15673 (2022) - [i53]Jishnu Mukhoti, Tsung-Yu Lin, Omid Poursaeed, Rui Wang, Ashish Shah, Philip H. S. Torr, Ser-Nam Lim:
Open Vocabulary Semantic Segmentation with Patch Aligned Contrastive Learning. CoRR abs/2212.04994 (2022) - 2021
- [c55]Peng Zhou, Ning Yu, Zuxuan Wu, Larry Davis, Abhinav Shrivastava, Ser-Nam Lim:
Deep Video Inpainting Detection. BMVC 2021: 35 - [c54]Bo He, Xitong Yang, Zuxuan Wu, Hao Chen, Ser-Nam Lim, Abhinav Shrivastava:
GTA: Global Temporal Attention for Video Action Understanding. BMVC 2021: 292 - [c53]Boyi Li, Felix Wu, Ser-Nam Lim, Serge J. Belongie
, Kilian Q. Weinberger:
On Feature Normalization and Data Augmentation. CVPR 2021: 12383-12392 - [c52]Menglin Jia, Zuxuan Wu, Austin Reiter, Claire Cardie, Serge J. Belongie
, Ser-Nam Lim:
Intentonomy: A Dataset and Study Towards Human Intent Understanding. CVPR 2021: 12986-12996 - [c51]Bor-Chun Chen, Zuxuan Wu, Larry S. Davis, Ser-Nam Lim:
Efficient Object Embedding for Spliced Image Retrieval. CVPR 2021: 14965-14975 - [c50]Shir Gur, Natalia Neverova, Christopher Stauffer, Ser-Nam Lim, Douwe Kiela, Austin Reiter:
Cross-Modal Retrieval Augmentation for Multi-Modal Classification. EMNLP (Findings) 2021: 111-123 - [c49]Menglin Jia, Austin Reiter, Ser-Nam Lim, Yoav Artzi, Claire Cardie:
When in Doubt: Improving Classification Performance with Alternating Normalization. EMNLP (Findings) 2021: 1716-1723 - [c48]Menglin Jia, Zuxuan Wu, Austin Reiter, Claire Cardie, Serge J. Belongie
, Ser-Nam Lim:
Exploring Visual Engagement Signals for Representation Learning. ICCV 2021: 4186-4197 - [c47]Luyu Yang, Yan Wang, Mingfei Gao, Abhinav Shrivastava, Kilian Q. Weinberger, Wei-Lun Chao, Ser-Nam Lim:
Deep Co-Training with Task Decomposition for Semi-Supervised Domain Adaptation. ICCV 2021: 8886-8896 - [c46]Yipin Zhou, Ser-Nam Lim:
Joint Audio-Visual Deepfake Detection. ICCV 2021: 14780-14789 - [c45]Omid Poursaeed, Tianxing Jiang, Harry Yang, Serge J. Belongie
, Ser-Nam Lim:
Robustness and Generalization via Generative Adversarial Training. ICCV 2021: 15691-15700 - [c44]Max Ehrlich, Larry Davis, Ser-Nam Lim, Abhinav Shrivastava:
Analyzing and Mitigating JPEG Compression Defects in Deep Learning. ICCVW 2021: 2357-2367 - [c43]Qian Huang, Horace He, Abhay Singh, Ser-Nam Lim, Austin R. Benson:
Combining Label Propagation and Simple Models out-performs Graph Neural Networks. ICLR 2021 - [c42]Isay Katsman, Aaron Lou, Derek Lim, Qingxuan Jiang, Ser-Nam Lim, Christopher De Sa:
Equivariant Manifold Flows. NeurIPS 2021: 10600-10612 - [c41]Keyu Tian, Chen Lin, Ser-Nam Lim, Wanli Ouyang, Puneet K. Dokania, Philip H. S. Torr:
A Continuous Mapping For Augmentation Design. NeurIPS 2021: 13732-13743 - [c40]Toru Lin, Jacob Huh, Christopher Stauffer, Ser-Nam Lim, Phillip Isola:
Learning to Ground Multi-Agent Communication with Autoencoders. NeurIPS 2021: 15230-15242 - [c39]Derek Lim, Felix Hohne, Xiuyu Li, Sijia Linda Huang, Vaishnavi Gupta, Omkar Bhalerao, Ser-Nam Lim:
Large Scale Learning on Non-Homophilous Graphs: New Benchmarks and Strong Simple Methods. NeurIPS 2021: 20887-20902 - [c38]Hao Chen, Bo He, Hanyu Wang, Yixuan Ren, Ser-Nam Lim, Abhinav Shrivastava:
NeRV: Neural Representations for Videos. NeurIPS 2021: 21557-21568 - [i52]Peng Zhou, Ning Yu, Zuxuan Wu, Larry S. Davis, Abhinav Shrivastava, Ser-Nam Lim:
Deep Video Inpainting Detection. CoRR abs/2101.11080 (2021) - [i51]Zuxuan Wu, Tom Goldstein, Larry S. Davis, Ser-Nam Lim:
THAT: Two Head Adversarial Training for Improving Robustness at Scale. CoRR abs/2103.13612 (2021) - [i50]Derek Lim, Xiuyu Li, Felix Hohne, Ser-Nam Lim:
New Benchmarks for Learning on Non-Homophilous Graphs. CoRR abs/2104.01404 (2021) - [i49]Sethuraman Sankaran, David Yang, Ser-Nam Lim:
Multimodal Fusion Refiner Networks. CoRR abs/2104.03435 (2021) - [i48]Menglin Jia, Zuxuan Wu, Austin Reiter, Claire Cardie, Serge J. Belongie, Ser-Nam Lim:
Exploring Visual Engagement Signals for Representation Learning. CoRR abs/2104.07767 (2021) - [i47]Shir Gur, Natalia Neverova, Christopher Stauffer, Ser-Nam Lim, Douwe Kiela, Austin Reiter:
Cross-Modal Retrieval Augmentation for Multi-Modal Classification. CoRR abs/2104.08108 (2021) - [i46]Abhay Singh, Qian Huang, Sijia Linda Huang, Omkar Bhalerao, Horace He, Ser-Nam Lim, Austin R. Benson:
Edge Proposal Sets for Link Prediction. CoRR abs/2106.15810 (2021) - [i45]Isay Katsman, Aaron Lou, Derek Lim, Qingxuan Jiang, Ser-Nam Lim, Christopher De Sa:
Equivariant Manifold Flows. CoRR abs/2107.08596 (2021) - [i44]Omid Poursaeed, Tianxing Jiang, Harry Yang, Serge J. Belongie, Ser-Nam Lim:
Robustness and Generalization via Generative Adversarial Training. CoRR abs/2109.02765 (2021) - [i43]Menglin Jia, Austin Reiter, Ser-Nam Lim, Yoav Artzi, Claire Cardie:
When in Doubt: Improving Classification Performance with Alternating Normalization. CoRR abs/2109.13449 (2021) - [i42]Peirong Liu, Rui Wang, Xuefei Cao, Yipin Zhou, Ashish Shah, Maxime Oquab, Camille Couprie, Ser-Nam Lim:
Self-appearance-aided Differential Evolution for Motion Transfer. CoRR abs/2110.04658 (2021) - [i41]Xuefeng Hu, M. Gökhan Uzunbas, Sirius Chen, Rui Wang, Ashish Shah, Ram Nevatia, Ser-Nam Lim:
MixNorm: Test-Time Adaptation Through Online Normalization Estimation. CoRR abs/2110.11478 (2021) - [i40]Hao Chen, Bo He, Hanyu Wang, Yixuan Ren, Ser-Nam Lim, Abhinav Shrivastava:
NeRV: Neural Representations for Videos. CoRR abs/2110.13903 (2021) - [i39]Derek Lim, Felix Hohne, Xiuyu Li, Sijia Linda Huang, Vaishnavi Gupta, Omkar Bhalerao, Ser-Nam Lim:
Large Scale Learning on Non-Homophilous Graphs: New Benchmarks and Strong Simple Methods. CoRR abs/2110.14446 (2021) - [i38]Toru Lin, Minyoung Huh, Christopher Stauffer, Ser-Nam Lim, Phillip Isola:
Learning to Ground Multi-Agent Communication with Autoencoders. CoRR abs/2110.15349 (2021) - [i37]Shishira R. Maiya, Max Ehrlich, Vatsal Agarwal, Ser-Nam Lim, Tom Goldstein, Abhinav Shrivastava:
A Frequency Perspective of Adversarial Robustness. CoRR abs/2111.00861 (2021) - [i36]Lingchen Meng, Hengduo Li, Bor-Chun Chen, Shiyi Lan, Zuxuan Wu, Yu-Gang Jiang, Ser-Nam Lim:
AdaViT: Adaptive Vision Transformers for Efficient Image Recognition. CoRR abs/2111.15668 (2021) - [i35]Kevin Musgrave, Serge J. Belongie, Ser-Nam Lim:
Unsupervised Domain Adaptation: A Reality Check. CoRR abs/2111.15672 (2021) - [i34]Zihang Meng, David Yang, Xuefei Cao, Ashish Shah, Ser-Nam Lim:
Object-Centric Unsupervised Image Captioning. CoRR abs/2112.00969 (2021) - [i33]Menglin Jia, Bor-Chun Chen, Zuxuan Wu, Claire Cardie, Serge J. Belongie, Ser-Nam Lim:
Rethinking Nearest Neighbors for Visual Classification. CoRR abs/2112.08459 (2021) - 2020
- [c37]Peng Zhou, Bor-Chun Chen, Xintong Han, Mahyar Najibi, Abhinav Shrivastava, Ser-Nam Lim, Larry Davis:
Generate, Segment, and Refine: Towards Generic Manipulation Segmentation. AAAI 2020: 13058-13065 - [c36]Chao Yang, Ser-Nam Lim:
One-Shot Domain Adaptation for Face Generation. CVPR 2020: 5920-5929 - [c35]Zuxuan Wu, Ser-Nam Lim, Larry S. Davis, Tom Goldstein:
Making an Invisibility Cloak: Real World Adversarial Attacks on Object Detectors. ECCV (4) 2020: 1-17 - [c34]Lucy Chai, David Bau
, Ser-Nam Lim, Phillip Isola:
What Makes Fake Images Detectable? Understanding Properties that Generalize. ECCV (26) 2020: 103-120 - [c33]Max Ehrlich, Larry Davis, Ser-Nam Lim, Abhinav Shrivastava:
Quantization Guided JPEG Artifact Correction. ECCV (8) 2020: 293-309 - [c32]Luyu Yang, Yogesh Balaji, Ser-Nam Lim, Abhinav Shrivastava:
Curriculum Manager for Source Selection in Multi-source Domain Adaptation. ECCV (14) 2020: 608-624 - [c31]Kevin Musgrave, Serge J. Belongie
, Ser-Nam Lim:
A Metric Learning Reality Check. ECCV (25) 2020: 681-699 - [c30]Aaron Lou, Isay Katsman, Qingxuan Jiang, Serge J. Belongie, Ser-Nam Lim, Christopher De Sa:
Differentiating through the Fréchet Mean. ICML 2020: 6393-6403 - [c29]Qian Huang, Horace He, Abhay Singh, Yan Zhang, Ser-Nam Lim, Austin R. Benson:
Better Set Representations For Relational Reasoning. NeurIPS 2020 - [c28]Aaron Lou, Derek Lim, Isay Katsman, Leo Huang, Qingxuan Jiang, Ser-Nam Lim, Christopher De Sa:
Neural Manifold Ordinary Differential Equations. NeurIPS 2020 - [c27]Shruti Agarwal, Hany Farid, Tarek El-Gaaly, Ser-Nam Lim:
Detecting Deep-Fake Videos from Appearance and Behavior. WIFS 2020: 1-6 - [i32]Boyi Li, Felix Wu, Ser-Nam Lim, Serge J. Belongie, Kilian Q. Weinberger:
On Feature Normalization and Data Augmentation. CoRR abs/2002.11102 (2020) - [i31]Aaron Lou, Isay Katsman, Qingxuan Jiang, Serge J. Belongie, Ser-Nam Lim, Christopher De Sa:
Differentiating through the Fréchet Mean. CoRR abs/2003.00335 (2020) - [i30]Austin Reiter, Menglin Jia, Pu Yang, Ser-Nam Lim:
Deep Multi-Modal Sets. CoRR abs/2003.01607 (2020) - [i29]Qian Huang, Horace He, Abhay Singh, Yan Zhang, Ser-Nam Lim, Austin R. Benson:
Set-Structured Latent Representations. CoRR abs/2003.04448 (2020) - [i28]Kevin Musgrave, Serge J. Belongie, Ser-Nam Lim:
A Metric Learning Reality Check. CoRR abs/2003.08505 (2020) - [i27]Chao Yang, Ser-Nam Lim:
One-Shot Domain Adaptation For Face Generation. CoRR abs/2003.12869 (2020) - [i26]Max Ehrlich, Ser-Nam Lim, Larry Davis, Abhinav Shrivastava:
Quantization Guided JPEG Artifact Correction. CoRR abs/2004.09320 (2020) - [i25]Shruti Agarwal, Tarek El-Gaaly, Hany Farid, Ser-Nam Lim:
Detecting Deep-Fake Videos from Appearance and Behavior. CoRR abs/2004.14491 (2020) - [i24]Aaron Lou, Derek Lim
, Isay Katsman, Leo Huang, Qingxuan Jiang, Ser-Nam Lim, Christopher De Sa:
Neural Manifold Ordinary Differential Equations. CoRR abs/2006.10254 (2020) - [i23]Luyu Yang, Yogesh Balaji, Ser-Nam Lim, Abhinav Shrivastava:
Curriculum Manager for Source Selection in Multi-Source Domain Adaptation. CoRR abs/2007.01261 (2020) - [i22]Luyu Yang, Yan Wang, Mingfei Gao, Abhinav Shrivastava, Kilian Q. Weinberger, Wei-Lun Chao, Ser-Nam Lim:
MiCo: Mixup Co-Training for Semi-Supervised Domain Adaptation. CoRR abs/2007.12684 (2020) - [i21]Kevin Musgrave, Serge J. Belongie, Ser-Nam Lim:
PyTorch Metric Learning. CoRR abs/2008.09164 (2020) - [i20]Lucy Chai, David Bau, Ser-Nam Lim, Phillip Isola:
What makes fake images detectable? Understanding properties that generalize. CoRR abs/2008.10588 (2020) - [i19]Qian Huang, Horace He, Abhay Singh, Ser-Nam Lim, Austin R. Benson:
Combining Label Propagation and Simple Models Out-performs Graph Neural Networks. CoRR abs/2010.13993 (2020) - [i18]Menglin Jia, Zuxuan Wu, Austin Reiter, Claire Cardie, Serge J. Belongie, Ser-Nam Lim:
Intentonomy: a Dataset and Study towards Human Intent Understanding. CoRR abs/2011.05558 (2020) - [i17]Max Ehrlich, Larry Davis, Ser-Nam Lim, Abhinav Shrivastava:
Analyzing and Mitigating Compression Defects in Deep Learning. CoRR abs/2011.08932 (2020) - [i16]Bo He, Xitong Yang, Zuxuan Wu, Hao Chen, Ser-Nam Lim, Abhinav Shrivastava:
GTA: Global Temporal Attention for Video Action Understanding. CoRR abs/2012.08510 (2020)
2010 – 2019
- 2019
- [c26]Qian Huang, Isay Katsman, Zeqi Gu, Horace He, Serge J. Belongie
, Ser-Nam Lim:
Enhancing Adversarial Example Transferability With an Intermediate Level Attack. ICCV 2019: 4732-4741 - [c25]Wei Luo, Xitong Yang, Xianjie Mo, Yuheng Lu, Larry Davis, Jun Li, Jian Yang, Ser-Nam Lim:
Cross-X Learning for Fine-Grained Visual Categorization. ICCV 2019: 8241-8250 - [i15]Bor-Chun Chen, Larry S. Davis, Ser-Nam Lim:
An Analysis of Object Embeddings for Image Retrieval. CoRR abs/1905.11903 (2019) - [i14]Qian Huang, Isay Katsman, Horace He, Zeqi Gu, Serge J. Belongie, Ser-Nam Lim:
Enhancing Adversarial Example Transferability with an Intermediate Level Attack. CoRR abs/1907.10823 (2019) - [i13]Wei Luo, Xitong Yang, Xianjie Mo, Yuheng Lu, Larry S. Davis, Jun Li, Jian Yang, Ser-Nam Lim:
Cross-X Learning for Fine-Grained Visual Categorization. CoRR abs/1909.04412 (2019) - [i12]Zuxuan Wu, Ser-Nam Lim, Larry Davis, Tom Goldstein:
Making an Invisibility Cloak: Real World Adversarial Attacks on Object Detectors. CoRR abs/1910.14667 (2019) - [i11]Xuefei Cao, Bor-Chun Chen, Ser-Nam Lim:
Unsupervised Deep Metric Learning via Auxiliary Rotation Loss. CoRR abs/1911.07072 (2019) - [i10]Omid Poursaeed
, Tianxing Jiang, Harry Yang, Serge J. Belongie, Ser-Nam Lim:
Fine-grained Synthesis of Unrestricted Adversarial Examples. CoRR abs/1911.09058 (2019) - [i9]Chao Yang, Ser-Nam Lim:
Unconstrained Facial Expression Transfer using Style-based Generator. CoRR abs/1912.06253 (2019) - [i8]Yin Cui, Zeqi Gu, Dhruv Mahajan, Laurens van der Maaten, Serge J. Belongie, Ser-Nam Lim:
Measuring Dataset Granularity. CoRR abs/1912.10154 (2019) - 2018
- [c24]Swami Sankaranarayanan, Arpit Jain, Rama Chellappa, Ser-Nam Lim:
Regularizing Deep Networks Using Efficient Layerwise Adversarial Training. AAAI 2018: 4008-4015 - [c23]Swami Sankaranarayanan, Yogesh Balaji, Arpit Jain
, Ser Nam Lim, Rama Chellappa:
Learning From Synthetic Data: Addressing Domain Shift for Semantic Segmentation. CVPR 2018: 3752-3761 - [c22]Zuxuan Wu, Xintong Han, Yen-Liang Lin, Mustafa Gökhan Uzunbas, Tom Goldstein, Ser-Nam Lim, Larry S. Davis:
DCAN: Dual Channel-Wise Alignment Networks for Unsupervised Scene Adaptation. ECCV (5) 2018: 535-552 - [c21]Yi Wei, Ming-Ching Chang, Yiming Ying, Ser Nam Lim, Siwei Lyu:
Explain Black-box Image Classifications Using Superpixel-based Interpretation. ICPR 2018: 1640-1645 - [i7]Zuxuan Wu, Xintong Han, Yen-Liang Lin, Mustafa Gökhan Uzunbas, Tom Goldstein, Ser-Nam Lim, Larry S. Davis:
DCAN: Dual Channel-wise Alignment Networks for Unsupervised Scene Adaptation. CoRR abs/1804.05827 (2018) - [i6]Qian Huang, Zeqi Gu, Isay Katsman, Horace He, Pian Pawakapan, Zhiqiu Lin, Serge J. Belongie, Ser-Nam Lim:
Intermediate Level Adversarial Attack for Enhanced Transferability. CoRR abs/1811.08458 (2018) - [i5]Horace He, Aaron Lou, Qingxuan Jiang, Isay Katsman, Pian Pawakapan, Serge J. Belongie, Ser-Nam Lim:
Adversarial Example Decomposition. CoRR abs/1812.01198 (2018) - 2017
- [c20]Mustafa Devrim Kaba, Mustafa Gökhan Uzunbas, Ser-Nam Lim:
A Reinforcement Learning Approach to the View Planning Problem. CVPR 2017: 5094-5102 - [c19]Wenbo Li
, Longyin Wen, Ming-Ching Chang, Ser Nam Lim, Siwei Lyu:
Adaptive RNN Tree for Large-Scale Human Action Recognition. ICCV 2017: 1453-1461 - [c18]Swami Sankaranarayanan, Arpit Jain
, Ser Nam Lim:
Guided Perturbations: Self-Corrective Behavior in Convolutional Neural Networks. ICCV 2017: 3582-3590 - [i4]Swami Sankaranarayanan, Arpit Jain, Ser Nam Lim:
Guided Perturbations: Self Corrective Behavior in Convolutional Neural Networks. CoRR abs/1703.07928 (2017) - [i3]Swami Sankaranarayanan, Arpit Jain, Rama Chellappa, Ser-Nam Lim:
Regularizing deep networks using efficient layerwise adversarial training. CoRR abs/1705.07819 (2017) - [i2]Swami Sankaranarayanan, Yogesh Balaji, Arpit Jain, Ser-Nam Lim, Rama Chellappa:
Unsupervised Domain Adaptation for Semantic Segmentation with GANs. CoRR abs/1711.06969 (2017) - 2016
- [c17]Wei Wang, Kun Duan, Tai-Peng Tian, Ting Yu, Ser Nam Lim, Hairong Qi:
Visual tracking based on object appearance and structure preserved local patches matching. AVSS 2016: 145-151 - [c16]Xiao Bian, Ser-Nam Lim, Ning Zhou:
Multiscale fully convolutional network with application to industrial inspection. WACV 2016: 1-8 - [c15]