


Остановите войну!
for scientists:


default search action
Michael Chertkov
Misha Chertkov
Person information

Refine list

refinements active!
zoomed in on ?? of ?? records
view refined list in
export refined list as
showing all ?? records
2020 – today
- 2023
- [i122]Hamidreza Behjoo, Michael Chertkov:
Exact Fractional Inference via Re-Parametrization & Interpolation between Tree-Re-Weighted- and Belief Propagation- Algorithms. CoRR abs/2301.10369 (2023) - [i121]Michael Chertkov:
Universality and Control of Fat Tails. CoRR abs/2303.09635 (2023) - [i120]Robert Ferrando, Laurent Pagnier, Robert Mieth, Zhirui Liang, Yury Dvorkin, Daniel Bienstock, Michael Chertkov:
A Physics-Informed Machine Learning for Electricity Markets: A NYISO Case Study. CoRR abs/2304.00062 (2023) - [i119]Criston Hyett, Laurent Pagnier, Jean Alisse, Lilach Sabban, Igal Goldshtein, Michael Chertkov:
Control of Line Pack in Natural Gas System: Balancing Limited Resources under Uncertainty. CoRR abs/2304.01955 (2023) - 2022
- [j27]Laurent Pagnier
, Julian Fritzsch
, Philippe Jacquod
, Michael Chertkov
:
Toward Model Reduction for Power System Transients With Physics-Informed PDE. IEEE Access 10: 65118-65125 (2022) - [i118]Laurent Pagnier, Robert Ferrando, Yury Dvorkin, Michael Chertkov
:
Machine Learning for Electricity Market Clearing. CoRR abs/2205.11641 (2022) - [i117]Lucas Fuentes Valenzuela, Lindell Williams, Michael Chertkov:
Statistical Mechanics of Thermostatically Controlled Multi-Zone Buildings. CoRR abs/2208.13099 (2022) - 2021
- [j26]Andrei Afonin, Michael Chertkov
:
Which Neural Network to Choose for Post-Fault Localization, Dynamic State Estimation, and Optimal Measurement Placement in Power Systems? Frontiers Big Data 4: 692493 (2021) - [i116]Nikolay Stulov, Michael Chertkov:
Neural Particle Image Velocimetry. CoRR abs/2101.11950 (2021) - [i115]Laurent Pagnier, Michael Chertkov:
Physics-Informed Graphical Neural Network for Parameter & State Estimations in Power Systems. CoRR abs/2102.06349 (2021) - [i114]Francesco Concetti, Michael Chertkov:
Message Passing Descent for Efficient Machine Learning. CoRR abs/2102.08110 (2021) - [i113]Laurent Pagnier, Michael Chertkov:
Embedding Power Flow into Machine Learning for Parameter and State Estimation. CoRR abs/2103.14251 (2021) - [i112]Andrei Afonin, Michael Chertkov:
Which Neural Network to Choose for Post-Fault Localization, Dynamic State Estimation and Optimal Measurement Placement in Power Systems? CoRR abs/2104.03115 (2021) - [i111]Mikhail Krechetov, Amir Mohammad Esmaieeli Sikaroudi, Alon Efrat, Valentin Polishchuk, Michael Chertkov:
Prediction and Prevention of Pandemics via Graphical Model Inference and Convex Programming. CoRR abs/2109.04517 (2021) - [i110]Michael Woodward, Yifeng Tian, Criston Hyett, Chris Fryer, Daniel Livescu, Mikhail Stepanov, Michael Chertkov:
Physics Informed Machine Learning of SPH: Machine Learning Lagrangian Turbulence. CoRR abs/2110.13311 (2021) - [i109]Laurent Pagnier, Michael Chertkov, Julian Fritzsch
, Philippe Jacquod:
Model Reduction of Swing Equations with Physics Informed PDE. CoRR abs/2110.14066 (2021) - 2020
- [j25]Saurav Talukdar, Deepjyoti Deka, Harish Doddi, Donatello Materassi, Michael Chertkov
, Murti V. Salapaka:
Physics informed topology learning in networks of linear dynamical systems. Autom. 112 (2020) - [j24]Michael Chertkov
, Göran Andersson
:
Multienergy Systems. Proc. IEEE 108(9): 1387-1391 (2020) - [j23]Ali Hassan
, Samrat Acharya
, Michael Chertkov
, Deepjyoti Deka
, Yury Dvorkin
:
A Hierarchical Approach to Multienergy Demand Response: From Electricity to Multienergy Applications. Proc. IEEE 108(9): 1457-1474 (2020) - [j22]Nikolay N. Novitsky, Zoya I. Shalaginova, Aleksandr A. Alekseev, Vyacheslav V. Tokarev
, Oksana A. Grebneva
, Aleksandr V. Lutsenko, Olga V. Vanteeva, Egor A. Mikhailovsky, Roman Pop, Petr Vorobev
, Michael Chertkov
:
Smarter Smart District Heating. Proc. IEEE 108(9): 1596-1611 (2020) - [j21]Deepjyoti Deka
, Michael Chertkov
, Scott Backhaus:
Joint Estimation of Topology and Injection Statistics in Distribution Grids With Missing Nodes. IEEE Trans. Control. Netw. Syst. 7(3): 1391-1403 (2020) - [j20]Sejun Park
, Deepjyoti Deka
, Scott Backhaus, Michael Chertkov
:
Learning With End-Users in Distribution Grids: Topology and Parameter Estimation. IEEE Trans. Control. Netw. Syst. 7(3): 1428-1440 (2020) - [j19]Deepjyoti Deka
, Saurav Talukdar
, Michael Chertkov
, Murti V. Salapaka
:
Graphical Models in Meshed Distribution Grids: Topology Estimation, Change Detection & Limitations. IEEE Trans. Smart Grid 11(5): 4299-4310 (2020) - [i108]Ali Hassan, Deepjyoti Deka, Michael Chertkov, Yury Dvorkin:
Data-Driven Learning and Load Ensemble Control. CoRR abs/2004.09675 (2020) - [i107]Ali Hassan, Samrat Acharya, Michael Chertkov, Deepjyoti Deka, Yury Dvorkin:
A Hierarchical Approach to Multi-Energy Demand Response: From Electricity to Multi-Energy Applications. CoRR abs/2005.02339 (2020) - [i106]Ilia Luchnikov, David Métivier, Henni Ouerdane, Michael Chertkov:
Super-relaxation of space-time-quantized ensemble of energy loads. CoRR abs/2008.03118 (2020)
2010 – 2019
- 2019
- [j18]Michael Chertkov
, Mihailo R. Jovanovic
, Bernard C. Lesieutre, Steven H. Low, Pascal Van Hentenryck, Louis Wehenkel:
Guest Editorial Special Issue on Analysis, Control, and Optimization of Energy Networks. IEEE Trans. Control. Netw. Syst. 6(3): 922-924 (2019) - [j17]Vladimir Y. Frolov
, Priyanko Guha Thakurta, Scott Backhaus, Janusz W. Bialek
, Michael Chertkov
:
Operations- and Uncertainty-Aware Installation of FACTS Devices in a Large Transmission System. IEEE Trans. Control. Netw. Syst. 6(3): 961-970 (2019) - [j16]Ali Hassan
, Robert Mieth
, Michael Chertkov
, Deepjyoti Deka
, Yury Dvorkin
:
Optimal Load Ensemble Control in Chance-Constrained Optimal Power Flow. IEEE Trans. Smart Grid 10(5): 5186-5195 (2019) - [c59]Valerii Likhosherstov, Yury Maximov, Misha Chertkov:
Inference and Sampling of $K_33$-free Ising Models. ICML 2019: 3963-3972 - [c58]Yize Chen, Md Umar Hashmi, Deepjyoti Deka, Michael Chertkov
:
Stochastic Battery Operations using Deep Neural Networks. ISGT 2019: 1-5 - [i105]Nikolay Stulov, Dejan J. Sobajic, Yury Maximov, Deepjyoti Deka, Michael Chertkov:
Learning a Generator Model from Terminal Bus Data. CoRR abs/1901.00781 (2019) - [i104]Roman Pop, Ali Hassan, Kenneth Bruninx, Michael Chertkov, Yury Dvorkin:
A Markov Process Approach to Ensemble Control of Smart Buildings. CoRR abs/1902.06866 (2019) - [i103]Deepjyoti Deka, Saurav Talukdar, Michael Chertkov, Murti V. Salapaka:
Graphical Models in Loopy Distribution Grids: Topology estimation, change detection and limitation. CoRR abs/1905.06550 (2019) - [i102]Valerii Likhosherstov, Yury Maximov, Michael Chertkov:
A New Family of Tractable Ising Models. CoRR abs/1906.06431 (2019) - [i101]Valerii Likhosherstov, Yury Maximov, Michael Chertkov:
Tractable Minor-free Generalization of Planar Zero-field Ising Models. CoRR abs/1910.11142 (2019) - 2018
- [j15]Colin Grudzien
, Deepjyoti Deka, Michael Chertkov
, Scott N. Backhaus:
Structure- and Physics-Preserving Reductions of Power Grid Models. Multiscale Model. Simul. 16(4): 1916-1947 (2018) - [j14]Deepjyoti Deka
, Scott Backhaus, Michael Chertkov
:
Structure Learning in Power Distribution Networks. IEEE Trans. Control. Netw. Syst. 5(3): 1061-1074 (2018) - [j13]Sungsoo Ahn
, Michael Chertkov
, Andrew E. Gelfand, Sejun Park, Jinwoo Shin
:
Maximum Weight Matching Using Odd-Sized Cycles: Max-Product Belief Propagation and Half-Integrality. IEEE Trans. Inf. Theory 64(3): 1471-1480 (2018) - [c57]Sejun Park, Deepjyoti Deka, Michael Chertkov
:
Learning in Power Distribution Grids under Correlated Injections. ACSSC 2018: 1863-1868 - [c56]Sungsoo Ahn, Michael Chertkov, Jinwoo Shin, Adrian Weller:
Gauged Mini-Bucket Elimination for Approximate Inference. AISTATS 2018: 10-19 - [c55]Saurav Talukdar, Deepjyoti Deka, Michael Chertkov
, Murti V. Salapaka:
Topology Learning of Radial Dynamical Systems with Latent Nodes. ACC 2018: 1096-1101 - [c54]Andrii Riazanov, Yury Maximov
, Michael Chertkov
:
Belief Propagation Min-Sum Algorithm for Generalized Min-Cost Network Flow. ACC 2018: 6108-6113 - [c53]Andrey Y. Lokhov, Deepjyoti Deka, Marc Vuffray, Michael Chertkov
:
Uncovering Power Transmission Dynamic Model from Incomplete PMU Observations. CDC 2018: 4008-4013 - [c52]Sungsoo Ahn, Michael Chertkov, Adrian Weller, Jinwoo Shin:
Bucket Renormalization for Approximate Inference. ICML 2018: 109-118 - [i100]Saurav Talukdar, Deepjyoti Deka, Michael Chertkov, Murti V. Salapaka:
Topology Learning of Radial Dynamical Systems with Latent Nodes. CoRR abs/1803.02793 (2018) - [i99]Sejun Park, Deepjyoti Deka, Scott Backhaus, Michael Chertkov:
Learning with End-Users in Distribution Grids: Topology and Parameter Estimation. CoRR abs/1803.04812 (2018) - [i98]Deepjyoti Deka, Michael Chertkov, Scott Backhaus:
Topology Estimation using Graphical Models in Multi-Phase Power Distribution Grids. CoRR abs/1803.06531 (2018) - [i97]Deepjyoti Deka, Michael Chertkov, Scott Backhaus:
Joint Estimation of Topology \& Injection Statistics in Distribution Grids with Missing Nodes. CoRR abs/1804.04742 (2018) - [i96]Ali Hassan, Robert Mieth, Michael Chertkov, Deepjyoti Deka, Yury Dvorkin:
Optimal Load Ensemble Control in Chance-Constrained Optimal Power Flow. CoRR abs/1805.09116 (2018) - [i95]David Métivier, Ilia Luchnikov, Michael Chertkov:
Power of Ensemble Diversity and Randomization for Energy Aggregation. CoRR abs/1808.09555 (2018) - [i94]Saurav Talukdar, Deepjyoti Deka, Harish Doddi, Donatello Materassi, Misha Chertkov, Murti V. Salapaka:
Physics Informed Topology Learning in Networks of Linear Dynamical Systems. CoRR abs/1809.10535 (2018) - [i93]David Métivier, Michael Chertkov:
Mean Field Control for Efficient Mixing of Energy Loads. CoRR abs/1810.00450 (2018) - [i92]Wenting Li, Deepjyoti Deka, Michael Chertkov, Meng Wang:
Real-time Fault Localization in Power Grids With Convolutional Neural Networks. CoRR abs/1810.05247 (2018) - [i91]Ryan King, Oliver Hennigh, Arvind Mohan, Michael Chertkov:
From Deep to Physics-Informed Learning of Turbulence: Diagnostics. CoRR abs/1810.07785 (2018) - [i90]Michael Chertkov, Yury Maximov:
Gauges, Loops, and Polynomials for Partition Functions of Graphical Models. CoRR abs/1811.04713 (2018) - [i89]Valerii Likhosherstov, Yury Maximov, Michael Chertkov:
Inference and Sampling of K33-free Ising Models. CoRR abs/1812.09587 (2018) - 2017
- [j12]Krishnamurthy Dvijotham
, Michael Chertkov
, Pascal Van Hentenryck, Marc Vuffray
, Sidhant Misra:
Graphical models for optimal power flow. Constraints An Int. J. 22(1): 24-49 (2017) - [c51]Michael Chertkov
, Yury Dvorkin:
Chance constrained optimal power flow with primary frequency response. CDC 2017: 4484-4489 - [c50]Michael Chertkov
, Alexander Korotkevich:
Adiabatic approach for natural gas pipeline computations. CDC 2017: 5634-5639 - [c49]Saurav Talukdar, Deepjyoti Deka, Blake Lundstrom, Michael Chertkov
, Murti V. Salapaka:
Learning Exact Topology of a Loopy Power Grid from Ambient Dynamics. e-Energy 2017: 222-227 - [c48]Deepjyoti Deka, Armin Zare, Andrey Y. Lokhov, Mihailo R. Jovanovic
, Michael Chertkov
:
State and noise covariance estimation in power grids using limited nodal PMUs. GlobalSIP 2017: 1075-1079 - [c47]Sungsoo Ahn, Michael Chertkov, Jinwoo Shin:
Gauging Variational Inference. NIPS 2017: 2881-2890 - [c46]Deepjyoti Deka, Michael Chertkov
, Scott Backhaus:
Estimating topology and injection statistics in distribution grids with hidden nodes. SmartGridComm 2017: 71-76 - [c45]Emma M. Stewart, Philip Top, Michael Chertkov
, Deepjyoti Deka, Scott Backhaus, Andrey Y. Lokhov, Ciaran M. Roberts, Val Hendrix, Sean Peisert
, Anthony Florita
, Thomas J. King, Matthew J. Reno:
Integrated multi-scale data analytics and machine learning for the distribution grid. SmartGridComm 2017: 423-429 - [i88]Michael Chertkov, Vladimir Y. Chernyak:
Ensemble of Thermostatically Controlled Loads: Statistical Physics Approach. CoRR abs/1701.04939 (2017) - [i87]Michael Chertkov, Vladimir Y. Chernyak:
Ensemble Control of Cycling Energy Loads: Markov Decision Approach. CoRR abs/1701.04941 (2017) - [i86]Michael Chertkov, Sidhant Misra, Marc Vuffray, Dvijotham Krishnamurty, Pascal Van Hentenryck:
Graphical Models and Belief Propagation-hierarchy for Optimal Physics-Constrained Network Flows. CoRR abs/1702.01890 (2017) - [i85]Michael Chertkov, Nikolai N. Novitsky:
Thermal Transients in District Heating Systems. CoRR abs/1702.07634 (2017) - [i84]Sidhant Misra, Marc Vuffray, Andrey Y. Lokhov, Michael Chertkov:
Towards Optimal Sparse Inverse Covariance Selection through Non-Convex Optimization. CoRR abs/1703.04886 (2017) - [i83]Michael Chertkov, Alexander Korotkevich:
Adiabatic approach for natural gas pipeline computations. CoRR abs/1706.00523 (2017) - [i82]Deepjyoti Deka, Saurav Talukdar, Michael Chertkov, Murti V. Salapaka:
Topology Estimation in Bulk Power Grids: Guarantees on Exact Recovery. CoRR abs/1707.01596 (2017) - [i81]Colin Grudzien, Deepjyoti Deka, Michael Chertkov, Scott Backhaus:
Structure- & Physics- Preserving Reductions of Power Grid Models. CoRR abs/1707.03672 (2017) - [i80]Vladimir A. Frolov, Michael Chertkov:
Methodology for Multi-stage, Operations- and Uncertainty-Aware Placement and Sizing of FACTS Devices in a Large Power Transmission System. CoRR abs/1707.03686 (2017) - [i79]Art B. Owen, Yury Maximov, Michael Chertkov:
Importance sampling the union of rare events with an application to power systems analysis. CoRR abs/1710.06965 (2017) - [i78]Andrii Riazanov, Yury Maximov, Michael Chertkov:
Belief Propagation Min-Sum Algorithm for Generalized Min-Cost Network Flow. CoRR abs/1710.07600 (2017) - [i77]Ali Hassan, Yury Dvorkin, Deepjyoti Deka, Michael Chertkov:
Chance-Constrained ADMM Approach for Decentralized Control of Distributed Energy Resources. CoRR abs/1710.09738 (2017) - [i76]Michael Chertkov, Deepjyoti Deka, Yury Dvorkin:
Optimal Ensemble Control of Loads in Distribution Grids with Network Constraints. CoRR abs/1710.09924 (2017) - [i75]Andrey Y. Lokhov, Marc Vuffray, Dmitry Shemetov, Deepjyoti Deka, Michael Chertkov:
Online Learning of Power Transmission Dynamics. CoRR abs/1710.10021 (2017) - [i74]Sejun Park, Deepjyoti Deka, Michael Chertkov:
Exact Topology and Parameter Estimation in Distribution Grids with Minimal Observability. CoRR abs/1710.10727 (2017) - 2016
- [j11]Jason K. Johnson, Diane Oyen, Michael Chertkov, Praneeth Netrapalli:
Learning Planar Ising Models. J. Mach. Learn. Res. 17: 215:1-215:26 (2016) - [c44]Krishnamurthy Dvijotham, Michael Chertkov
, Steven H. Low:
Monotone operator approach to power flow solutions. ACC 2016: 1769 - [c43]Anatoly Zlotnik
, Line Roald, Scott Backhaus
, Michael Chertkov
, Göran Andersson:
Control policies for operational coordination of electric power and natural gas transmission systems. ACC 2016: 7478-7483 - [c42]Deepjyoti Deka, Scott Backhaus, Michael Chertkov
:
Tractable structure learning in radial physical flow networks. CDC 2016: 6631-6638 - [c41]Deepjyoti Deka, Scott Backhaus, Michael Chertkov
:
Learning topology of the power distribution grid with and without missing data. ECC 2016: 313-320 - [c40]Anatoly Zlotnik, Sidhant Misra, Marc Vuffray
, Michael Chertkov
:
Monotonicity of actuated flows on dissipative transport networks. ECC 2016: 831-836 - [c39]Anatoly Zlotnik, Michael Chertkov
, Konstantin S. Turitsyn:
Assessing Risk of Gas Shortage in Coupled Gas-Electricity Infrastructures. HICSS 2016: 2519-2527 - [c38]Sungsoo Ahn, Michael Chertkov, Jinwoo Shin:
Synthesis of MCMC and Belief Propagation. NIPS 2016: 1453-1461 - [c37]Marc Vuffray, Sidhant Misra, Andrey Y. Lokhov, Michael Chertkov:
Interaction Screening: Efficient and Sample-Optimal Learning of Ising Models. NIPS 2016: 2595-2603 - [c36]Deepjyoti Deka, Scott Backhaus
, Michael Chertkov
:
Estimating distribution grid topologies: A graphical learning based approach. PSCC 2016: 1-7 - [c35]Line Roald, Göran Andersson, Sidhant Misra, Michael Chertkov
, Scott Backhaus
:
Optimal power flow with wind power control and limited expected risk of overloads. PSCC 2016: 1-7 - [c34]Deepjyoti Deka, Scott Backhaus, Michael Chertkov
:
Learning topology of distribution grids using only terminal node measurements. SmartGridComm 2016: 205-211 - [i73]Line Roald, Sidhant Misra, Michael Chertkov, Scott Backhaus, Göran Andersson:
Chance Constrained Optimal Power Flow with Curtailment and Reserves from Wind Power Plants. CoRR abs/1601.04321 (2016) - [i72]Deepjyoti Deka, Scott Backhaus, Michael Chertkov:
Estimating Distribution Grid Topologies: A Graphical Learning based Approach. CoRR abs/1602.08509 (2016) - [i71]Deepjyoti Deka, Scott Backhaus, Michael Chertkov:
Learning Topology of the Power Distribution Grid with and without Missing Data. CoRR abs/1603.01650 (2016) - [i70]Marc Vuffray, Sidhant Misra, Andrey Y. Lokhov, Michael Chertkov:
Interaction Screening: Efficient and Sample-Optimal Learning of Ising Models. CoRR abs/1605.07252 (2016) - [i69]Sungsoo Ahn, Michael Chertkov, Jinwoo Shin:
MCMC assisted by Belief Propagaion. CoRR abs/1605.09042 (2016) - [i68]Krishnamurthy Dvijotham, Pascal Van Hentenryck, Michael Chertkov, Sidhant Misra, Marc Vuffray:
Graphical Models for Optimal Power Flow. CoRR abs/1606.06512 (2016) - [i67]Vladimir A. Frolov, Priyanko Guha Thakurta, Scott Backhaus, Janusz W. Bialek, Michael Chertkov:
Optimal Placement and Sizing of FACTS Devices to Delay Transmission Expansion. CoRR abs/1608.04467 (2016) - [i66]Deepjyoti Deka, Scott Backhaus, Michael Chertkov:
Learning Topology of Distribution Grids using only Terminal Node Measurements. CoRR abs/1608.05031 (2016) - [i65]Deepjyoti Deka, Scott Backhaus, Michael Chertkov:
Tractable Structure Learning in Radial Physical Flow Networks. CoRR abs/1608.05064 (2016) - [i64]Andrey Y. Lokhov, Marc Vuffray, Sidhant Misra, Michael Chertkov:
Optimal structure and parameter learning of Ising models. CoRR abs/1612.05024 (2016) - 2015
- [j10]Sidhant Misra, Michael W. Fisher, Scott Backhaus
, Russell Bent
, Michael Chertkov
, Feng Pan:
Optimal Compression in Natural Gas Networks: A Geometric Programming Approach. IEEE Trans. Control. Netw. Syst. 2(1): 47-56 (2015) - [c33]Krishnamurthy Dvijotham, Michael Chertkov
:
Convexity of structure preserving energy functions in power transmission: Novel results and applications. ACC 2015: 5035-5042 - [c32]Krishnamurthy Dvijotham, Michael Chertkov
, Steven H. Low:
A differential analysis of the power flow equations. CDC 2015: 23-30 - [c31]Anatoly Zlotnik
, Michael Chertkov
, Scott Backhaus
:
Optimal control of transient flow in natural gas networks. CDC 2015: 4563-4570 - [c30]Marc Vuffray
, Sidhant Misra, Michael Chertkov
:
Monotonicity of dissipative flow networks renders robust maximum profit problem tractable: General analysis and application to natural gas flows. CDC 2015: 4571-4578 - [c29]Line Roald, Sidhant Misra, Michael Chertkov
, Göran Andersson:
Optimal Power Flow with Weighted chance constraints and general policies for generation control. CDC 2015: 6927-6933 - [c28]Changhong Zhao, Michael Chertkov
, Scott Backhaus
:
Optimal Sizing of Voltage Control Devices for Distribution Circuit with Intermittent Load. HICSS 2015: 2680-2689 - [c27]Michael Chertkov
, Michael W. Fisher, Scott Backhaus
, Russell Bent
, Sidhant Misra:
Pressure Fluctuations in Natural Gas Networks Caused by Gas-Electric Coupling. HICSS 2015: 2738-2747 - [c26]Sungsoo Ahn, Sejun Park, Michael Chertkov, Jinwoo Shin:
Minimum Weight Perfect Matching via Blossom Belief Propagation. NIPS 2015: 1288-1296 - [i63]Deepjyoti Deka, Scott Backhaus, Michael Chertkov:
Structure Learning in Power Distribution Networks. CoRR abs/1501.04131 (2015) - [i62]Line Roald, Sidhant Misra, Michael Chertkov, Göran Andersson:
Optimal Power Flow with Weighted Chance Constraints and General Policies for Generation Control. CoRR abs/1504.00057 (2015) - [i61]Krishnamurthy Dvijotham, Marc Vuffray, Sidhant Misra, Michael Chertkov:
Natural Gas Flow Solutions with Guarantees: A Monotone Operator Theory Approach. CoRR abs/1506.06075 (2015) - [i60]Krishnamurthy Dvijotham, Steven H. Low, Michael Chertkov:
Solving the Power Flow Equations: A Monotone Operator Approach. CoRR abs/1506.08472 (2015) - [i59]Krishnamurthy Dvijotham, Michael Chertkov, Steven H. Low:
Solving the Power Flow Equations: A Monotone Operator Theory Approach. CoRR abs/1506.08814 (2015) - [i58]Misha Chertkov, Michael W. Fisher, Scott Backhaus, Russell Bent, Sidhant Misra:
Pressure Fluctuations in Natural Gas Networks caused by Gas-Electric Coupling. CoRR abs/1507.06601 (2015) - [i57]Sungsoo Ahn, Sejun Park, Michael Chertkov, Jinwoo Shin:
Minimum Weight Perfect Matching via Blossom Belief Propagation. CoRR abs/1509.06849 (2015) - 2014
- [j9]Daniel Bienstock, Michael Chertkov
, Sean Harnett:
Chance-Constrained Optimal Power Flow: Risk-Aware Network Control under Uncertainty. SIAM Rev. 56(3): 461-495 (2014) - [c25]Krishnamurthy Dvijotham, Misha Chertkov
, Scott Backhaus
:
Storage Sizing and Placement through Operational and Uncertainty-Aware Simulations. HICSS 2014: 2408-2416 - [i56]