Lifang He 0001
何丽芳
Person information
- affiliation: Department of Biostatistics, Epidemiology and Informatics, University of Pennsylvania, Philadelphia, PA, USA
- affiliation (former): Cornell University, Weill Cornell Medical College, New York, NY, USA
- affiliation (former): Shenzhen University, School of Computer Science and Software Engineering, Computer Vision Institute, China
- affiliation (PhD 2014): South China Institute of Technology, School of Computer Science and Engineering, Guangzhou, China
- unicode name: 何丽芳
Other persons with the same name
- Lifang He
- Lifang He 0002 — Central South University, School of Information Science and Engineering, Changsha, China
- Lifang He 0003 — Nanjing University of Aeronautics and Astronautics, College of Economics and Management, China
- Lifang He 0004 — Kunming University of Science and Technology, Department of Electronics and Communication Engineering, China
Refine list

refinements active!
zoomed in on ?? of ?? records
view refined list in
export refined list as
showing all ?? records
2010 – today
- 2018
- [c39]Ye Liu, Lifang He, Bokai Cao, Philip S. Yu, Ann B. Ragin, Alex D. Leow:
Multi-View Multi-Graph Embedding for Brain Network Clustering Analysis. AAAI 2018: 117-124 - [c38]Lei Zheng, Yixue Wang, Lifang He, Sihong Xie, Fengjiao Wang, Philip S. Yu:
PER: A Probabilistic Attentional Model for Personalized Text Recommendations. BigData 2018: 911-920 - [c37]Lichao Sun, Lifang He, Zhipeng Huang, Bokai Cao, Congying Xia, Xiaokai Wei, Philip S. Yu:
Joint Embedding of Meta-Path and Meta-Graph for Heterogeneous Information Networks. ICBK 2018: 131-138 - [c36]Chaozhuo Li, Senzhang Wang, Lifang He, Philip S. Yu, Yanbo Liang, Zhoujun Li:
SSDMV: Semi-Supervised Deep Social Spammer Detection by Multi-view Data Fusion. ICDM 2018: 247-256 - [c35]Lifang He, Chun-Ta Lu, Yong Chen, Jiawei Zhang, Linlin Shen, Philip S. Yu, Fei Wang:
A Self-Organizing Tensor Architecture for Multi-view Clustering. ICDM 2018: 1007-1012 - [c34]Jianguo Zhang, Ji Wang, Lifang He, Zhao Li, Philip S. Yu:
Layerwise Perturbation-Based Adversarial Training for Hard Drive Health Degree Prediction. ICDM 2018: 1428-1433 - [c33]Limeng Cui, Zhensong Chen, Jiawei Zhang, Lifang He, Yong Shi, Philip S. Yu:
Multi-View Fusion Through Cross-Modal Retrieval. ICIP 2018: 1977-1981 - [c32]Limeng Cui, Zhensong Chen, Jiawei Zhang, Lifang He, Yong Shi, Philip S. Yu:
Multi-view Collective Tensor Decomposition for Cross-modal Hashing. ICMR 2018: 73-81 - [c31]Lifang He, Kun Chen, Wanwan Xu, Jiayu Zhou, Fei Wang:
Boosted Sparse and Low-Rank Tensor Regression. NeurIPS 2018: 1017-1026 - [c30]Fei Jiang, Lifang He, Yi Zheng, Enqiang Zhu, Jin Xu, Philip S. Yu:
On Spectral Graph Embedding: A Non-Backtracking Perspective and Graph Approximation. SDM 2018: 324-332 - [c29]Chun-Ta Lu, Lifang He, Hao Ding, Bokai Cao, Philip S. Yu:
Learning from Multi-View Multi-Way Data via Structural Factorization Machines. WWW 2018: 1593-1602 - [i17]Mehrnaz Najafi, Lifang He, Philip S. Yu:
Error-Robust Multi-View Clustering. CoRR abs/1801.00384 (2018) - [i16]Fei Jiang, Lifang He, Yi Zheng, Enqiang Zhu, Jin Xu, Philip S. Yu:
On Spectral Graph Embedding: A Non-Backtracking Perspective and Graph Approximation. CoRR abs/1801.05855 (2018) - [i15]Lei Zheng, Chun-Ta Lu, Lifang He, Sihong Xie, Vahid Noroozi, He Huang, Philip S. Yu:
MARS: Memory Attention-Aware Recommender System. CoRR abs/1805.07037 (2018) - [i14]Xi Zhang, Lifang He, Kun Chen, Yuan Luo, Jiayu Zhou, Fei Wang:
Multi-View Graph Convolutional Network and Its Applications on Neuroimage Analysis for Parkinson's Disease. CoRR abs/1805.08801 (2018) - [i13]Ye Liu, Lifang He, Bokai Cao, Philip S. Yu, Ann B. Ragin, Alex D. Leow:
Multi-View Multi-Graph Embedding for Brain Network Clustering Analysis. CoRR abs/1806.07703 (2018) - [i12]Lichao Sun, Lifang He, Zhipeng Huang, Bokai Cao, Congying Xia, Xiaokai Wei, Philip S. Yu:
Joint Embedding of Meta-Path and Meta-Graph for Heterogeneous Information Networks. CoRR abs/1809.04110 (2018) - [i11]Jianguo Zhang, Ji Wang, Lifang He, Zhao Li, Philip S. Yu:
Layerwise Perturbation-Based Adversarial Training for Hard Drive Health Degree Prediction. CoRR abs/1809.04188 (2018) - [i10]Lifang He, Chun-Ta Lu, Yong Chen, Jiawei Zhang, Linlin Shen, Philip S. Yu, Fei Wang:
A Self-Organizing Tensor Architecture for Multi-View Clustering. CoRR abs/1810.07874 (2018) - [i9]Lifang He, Kun Chen, Wanwan Xu, Jiayu Zhou, Fei Wang:
Boosted Sparse and Low-Rank Tensor Regression. CoRR abs/1811.01158 (2018) - 2017
- [j10]Ning Yang, Lifang He, Zheng Li, Philip S. Yu:
Reducing uncertainty of dynamic heterogeneous information networks: a fusing reconstructing approach. Data Min. Knowl. Discov. 31(3): 879-906 (2017) - [j9]Senzhang Wang, Xiaoming Zhang, Jianping Cao, Lifang He, Leon Stenneth, Philip S. Yu, Zhoujun Li, Zhiqiu Huang:
Computing Urban Traffic Congestions by Incorporating Sparse GPS Probe Data and Social Media Data. ACM Trans. Inf. Syst. 35(4): 40:1-40:30 (2017) - [c28]
- [c27]Lichao Sun, Xiaokai Wei, Jiawei Zhang, Lifang He, Philip S. Yu, Witawas Srisa-an:
Contaminant removal for Android malware detection systems. BigData 2017: 1053-1062 - [c26]Guixiang Ma, Lifang He, Chun-Ta Lu, Weixiang Shao, Philip S. Yu, Alex D. Leow, Ann B. Ragin:
Multi-view Clustering with Graph Embedding for Connectome Analysis. CIKM 2017: 127-136 - [c25]Yuqi Wang, Jiannong Cao, Lifang He, Wengen Li, Lichao Sun, Philip S. Yu:
Coupled Sparse Matrix Factorization for Response Time Prediction in Logistics Services. CIKM 2017: 939-947 - [c24]Junxing Zhu, Jiawei Zhang, Lifang He, Quanyuan Wu, Bin Zhou, Chenwei Zhang, Philip S. Yu:
Broad Learning based Multi-Source Collaborative Recommendation. CIKM 2017: 1409-1418 - [c23]Lifang He, Chun-Ta Lu, Hao Ding, Shen Wang, Linlin Shen, Philip S. Yu, Ann B. Ragin:
Multi-way Multi-level Kernel Modeling for Neuroimaging Classification. CVPR 2017: 6846-6854 - [c22]Tingting Liang, Lifang He, Chun-Ta Lu, Liang Chen, Philip S. Yu, Jian Wu:
A Broad Learning Approach for Context-Aware Mobile Application Recommendation. ICDM 2017: 955-960 - [c21]Guixiang Ma, Chun-Ta Lu, Lifang He, Philip S. Yu, Ann B. Ragin:
Multi-view Graph Embedding with Hub Detection for Brain Network Analysis. ICDM 2017: 967-972 - [c20]Lifang He, Chun-Ta Lu, Guixiang Ma, Shen Wang, LinLin Shen, Philip S. Yu, Ann B. Ragin:
Kernelized Support Tensor Machines. ICML 2017: 1442-1451 - [c19]Shen Wang, Lifang He, Bokai Cao, Chun-Ta Lu, Philip S. Yu, Ann B. Ragin:
Structural Deep Brain Network Mining. KDD 2017: 475-484 - [c18]Bokai Cao, Lifang He, Xiaokai Wei, Mengqi Xing, Philip S. Yu, Heide Klumpp, Alex D. Leow:
t-BNE: Tensor-based Brain Network Embedding. SDM 2017: 189-197 - [c17]Chun-Ta Lu, Lifang He, Weixiang Shao, Bokai Cao, Philip S. Yu:
Multilinear Factorization Machines for Multi-Task Multi-View Learning. WSDM 2017: 701-709 - [i8]Chun-Ta Lu, Lifang He, Hao Ding, Philip S. Yu:
Learning from Multi-View Structural Data via Structural Factorization Machines. CoRR abs/1704.03037 (2017) - [i7]Tingting Liang, Lifang He, Chun-Ta Lu, Liang Chen, Philip S. Yu, Jian Wu:
A Broad Learning Approach for Context-Aware Mobile Application Recommendation. CoRR abs/1709.03621 (2017) - [i6]Guixiang Ma, Chun-Ta Lu, Lifang He, Philip S. Yu, Ann B. Ragin:
Multi-view Graph Embedding with Hub Detection for Brain Network Analysis. CoRR abs/1709.03659 (2017) - [i5]Lichao Sun, Xiaokai Wei, Jiawei Zhang, Lifang He, Philip S. Yu, Witawas Srisa-an:
Contaminant Removal for Android Malware Detection Systems. CoRR abs/1711.02715 (2017) - 2016
- [j8]De-Yu Tang, Shoubin Dong, Lifang He, Yi Jiang:
Intrusive tumor growth inspired optimization algorithm for data clustering. Neural Computing and Applications 27(2): 349-374 (2016) - [c16]Weixiang Shao, Lifang He, Chun-Ta Lu, Philip S. Yu:
Online multi-view clustering with incomplete views. BigData 2016: 1012-1017 - [c15]Weixiang Shao, Lifang He, Chun-Ta Lu, Xiaokai Wei, Philip S. Yu:
Online Unsupervised Multi-view Feature Selection. ICDM 2016: 1203-1208 - [c14]Chun-Ta Lu, Sihong Xie, Weixiang Shao, Lifang He, Philip S. Yu:
Item Recommendation for Emerging Online Businesses. IJCAI 2016: 3797-3803 - [c13]Weixiang Shao, Jiawei Zhang, Lifang He, Philip S. Yu:
Multi-source Multi-view Clustering via discrepancy penalty. IJCNN 2016: 2714-2721 - [c12]Lifang He, Chun-Ta Lu, Jiaqi Ma, Jianping Cao, Linlin Shen, Philip S. Yu:
Joint Community and Structural Hole Spanner Detection via Harmonic Modularity. KDD 2016: 875-884 - [c11]Senzhang Wang, Lifang He, Leon Stenneth, Philip S. Yu, Zhoujun Li, Zhiqiu Huang:
Estimating Urban Traffic Congestions with Multi-sourced Data. MDM 2016: 82-91 - [c10]Guixiang Ma, Lifang He, Bokai Cao, Jiawei Zhang, Philip S. Yu, Ann B. Ragin:
Multi-graph Clustering Based on Interior-Node Topology with Applications to Brain Networks. ECML/PKDD (1) 2016: 476-492 - [c9]Jiawei Zhang, Qianyi Zhan, Lifang He, Charu C. Aggarwal, Philip S. Yu:
Trust Hole Identification in Signed Networks. ECML/PKDD (1) 2016: 697-713 - [c8]Guixiang Ma, Lifang He, Chun-Ta Lu, Philip S. Yu, Linlin Shen, Ann B. Ragin:
Spatio-Temporal Tensor Analysis for Whole-Brain fMRI Classification. SDM 2016: 819-827 - [i4]Weixiang Shao, Jiawei Zhang, Lifang He, Philip S. Yu:
Multi-Source Multi-View Clustering via Discrepancy Penalty. CoRR abs/1604.04029 (2016) - [i3]Weixiang Shao, Lifang He, Chun-Ta Lu, Xiaokai Wei, Philip S. Yu:
Online Unsupervised Multi-view Feature Selection. CoRR abs/1609.08286 (2016) - [i2]Weixiang Shao, Lifang He, Chun-Ta Lu, Philip S. Yu:
Online Multi-view Clustering with Incomplete Views. CoRR abs/1611.00481 (2016) - 2015
- [j7]Xiaowei Yang, Le Han, Yan Li, Lifang He:
A bilateral-truncated-loss based robust support vector machine for classification problems. Soft Comput. 19(10): 2871-2882 (2015) - [j6]Xiaolan Liu, Tengjiao Guo, Lifang He, Xiaowei Yang:
A Low-Rank Approximation-Based Transductive Support Tensor Machine for Semisupervised Classification. IEEE Trans. Image Processing 24(6): 1825-1838 (2015) - [c7]Xiaobing Han, Yanfei Zhong, Lifang He, Philip S. Yu, Liangpei Zhang:
The Unsupervised Hierarchical Convolutional Sparse Auto-Encoder for Neuroimaging Data Classification. BIH 2015: 156-166 - [c6]Senzhang Wang, Lifang He, Leon Stenneth, Philip S. Yu, Zhoujun Li:
Citywide traffic congestion estimation with social media. SIGSPATIAL/GIS 2015: 34:1-34:10 - [c5]Weixiang Shao, Lifang He, Philip S. Yu:
Clustering on Multi-source Incomplete Data via Tensor Modeling and Factorization. PAKDD (2) 2015: 485-497 - [c4]Weixiang Shao, Lifang He, Philip S. Yu:
Multiple Incomplete Views Clustering via Weighted Nonnegative Matrix Factorization with L2, 1 Regularization. ECML/PKDD (1) 2015: 318-334 - 2014
- [j5]Xiaowei Yang, Liangjun Tan, Lifang He:
A robust least squares support vector machine for regression and classification with noise. Neurocomputing 140: 41-52 (2014) - [j4]Tengjiao Guo, Le Han, Lifang He, Xiaowei Yang:
A GA-based feature selection and parameter optimization for linear support higher-order tensor machine. Neurocomputing 144: 408-416 (2014) - [c3]Bokai Cao, Lifang He, Xiangnan Kong, Philip S. Yu, Zhifeng Hao, Ann B. Ragin:
Tensor-Based Multi-view Feature Selection with Applications to Brain Diseases. ICDM 2014: 40-49 - [c2]Lifang He, Hong-Han Shuai, Xiangnan Kong, Zhifeng Hao, Xiaowei Yang, Philip S. Yu:
Low-Density Cut Based Tree Decomposition for Large-Scale SVM Problems. ICDM 2014: 839-844 - [c1]Lifang He, Xiangnan Kong, Philip S. Yu, Xiaowei Yang, Ann B. Ragin, Zhifeng Hao:
DuSK: A Dual Structure-preserving Kernel for Supervised Tensor Learning with Applications to Neuroimages. SDM 2014: 127-135 - [i1]Lifang He, Xiangnan Kong, Philip S. Yu, Ann B. Ragin, Zhifeng Hao, Xiaowei Yang:
DuSK: A Dual Structure-preserving Kernel for Supervised Tensor Learning with Applications to Neuroimages. CoRR abs/1407.8289 (2014) - 2013
- [j3]Xiaowei Yang, Qiaozhen Yu, Lifang He, Tengjiao Guo:
The one-against-all partition based binary tree support vector machine algorithms for multi-class classification. Neurocomputing 113: 1-7 (2013) - [j2]Lifang He, Xiaowei Yang, Zhifeng Hao:
An adaptive class pairwise dimensionality reduction algorithm. Neural Computing and Applications 23(2): 299-310 (2013) - [j1]Zhifeng Hao, Lifang He, Bingqian Chen, Xiaowei Yang:
A Linear Support Higher-Order Tensor Machine for Classification. IEEE Trans. Image Processing 22(7): 2911-2920 (2013)
Coauthor Index
[c39] [c38] [c37] [c36] [c35] [c34] [c33] [c32] [c30] [c29] [i17] [i16] [i15] [i13] [i12] [i11] [i10] [j10] [j9] [c28] [c27] [c26] [c25] [c24] [c23] [c22] [c21] [c20] [c19] [c18] [c17] [i8] [i7] [i6] [i5] [c16] [c15] [c14] [c13] [c12] [c11] [c10] [c9] [c8] [i4] [i3] [i2] [c7] [c6] [c5] [c4] [c3] [c2] [c1] [i1]
last updated on 2019-02-14 22:35 CET by the dblp team
data released under the ODC-BY 1.0 license
see also: Terms of Use | Privacy Policy | Imprint