BibTeX records: Alexandr Polyanskii

download as .bib file

@article{DBLP:journals/dcg/MerinoJPW18,
  author    = {Bernardo Gonz{\'{a}}lez Merino and
               Thomas Jahn and
               Alexandr Polyanskii and
               Gerd Wachsmuth},
  title     = {Hunting for Reduced Polytopes},
  journal   = {Discrete {\&} Computational Geometry},
  volume    = {60},
  number    = {3},
  pages     = {801--808},
  year      = {2018},
  url       = {https://doi.org/10.1007/s00454-018-9982-3},
  doi       = {10.1007/s00454-018-9982-3},
  timestamp = {Mon, 16 Sep 2019 01:00:00 +0200},
  biburl    = {https://dblp.org/rec/bib/journals/dcg/MerinoJPW18},
  bibsource = {dblp computer science bibliography, https://dblp.org}
}
@article{DBLP:journals/ejc/NaszodiP18,
  author    = {M{\'{a}}rton Nasz{\'{o}}di and
               Alexandr Polyanskii},
  title     = {Approximating set multi-covers},
  journal   = {Eur. J. Comb.},
  volume    = {67},
  pages     = {174--180},
  year      = {2018},
  url       = {https://doi.org/10.1016/j.ejc.2017.08.001},
  doi       = {10.1016/j.ejc.2017.08.001},
  timestamp = {Thu, 28 Dec 2017 00:00:00 +0100},
  biburl    = {https://dblp.org/rec/bib/journals/ejc/NaszodiP18},
  bibsource = {dblp computer science bibliography, https://dblp.org}
}
@article{DBLP:journals/combinatorica/KupavskiiP17,
  author    = {Andrey B. Kupavskii and
               Alexandr Polyanskii},
  title     = {Proof of Schur's Conjecture in {\(\mathbb{R}\)} {D}},
  journal   = {Combinatorica},
  volume    = {37},
  number    = {6},
  pages     = {1181--1205},
  year      = {2017},
  url       = {https://doi.org/10.1007/s00493-016-3340-y},
  doi       = {10.1007/s00493-016-3340-y},
  timestamp = {Thu, 08 Feb 2018 00:00:00 +0100},
  biburl    = {https://dblp.org/rec/bib/journals/combinatorica/KupavskiiP17},
  bibsource = {dblp computer science bibliography, https://dblp.org}
}
@article{DBLP:journals/dm/Polyanskii17,
  author    = {Alexandr Polyanskii},
  title     = {Pairwise intersecting homothets of a convex body},
  journal   = {Discrete Mathematics},
  volume    = {340},
  number    = {8},
  pages     = {1950--1956},
  year      = {2017},
  url       = {https://doi.org/10.1016/j.disc.2017.04.002},
  doi       = {10.1016/j.disc.2017.04.002},
  timestamp = {Sat, 30 Dec 2017 00:00:00 +0100},
  biburl    = {https://dblp.org/rec/bib/journals/dm/Polyanskii17},
  bibsource = {dblp computer science bibliography, https://dblp.org}
}
@article{DBLP:journals/endm/Polyanskii17,
  author    = {Alexandr Polyanskii},
  title     = {Pairwise intersecting homothets of a convex body},
  journal   = {Electronic Notes in Discrete Mathematics},
  volume    = {61},
  pages     = {1003--1009},
  year      = {2017},
  url       = {https://doi.org/10.1016/j.endm.2017.07.065},
  doi       = {10.1016/j.endm.2017.07.065},
  timestamp = {Wed, 23 Aug 2017 01:00:00 +0200},
  biburl    = {https://dblp.org/rec/bib/journals/endm/Polyanskii17},
  bibsource = {dblp computer science bibliography, https://dblp.org}
}
@article{DBLP:journals/corr/NaszodiP16,
  author    = {M{\'{a}}rton Nasz{\'{o}}di and
               Alexandr Polyanskii},
  title     = {Multiple Transversals Greedily},
  journal   = {CoRR},
  volume    = {abs/1608.01292},
  year      = {2016},
  url       = {http://arxiv.org/abs/1608.01292},
  archivePrefix = {arXiv},
  eprint    = {1608.01292},
  timestamp = {Mon, 13 Aug 2018 01:00:00 +0200},
  biburl    = {https://dblp.org/rec/bib/journals/corr/NaszodiP16},
  bibsource = {dblp computer science bibliography, https://dblp.org}
}
@article{DBLP:journals/corr/abs-1402-3694,
  author    = {Andrey B. Kupavskii and
               Alexandr Polyanskii},
  title     = {Proof of Schur's conjecture in {\(\mathbb{R}\)}\({}^{\mbox{d}}\)},
  journal   = {CoRR},
  volume    = {abs/1402.3694},
  year      = {2014},
  url       = {http://arxiv.org/abs/1402.3694},
  archivePrefix = {arXiv},
  eprint    = {1402.3694},
  timestamp = {Mon, 13 Aug 2018 01:00:00 +0200},
  biburl    = {https://dblp.org/rec/bib/journals/corr/abs-1402-3694},
  bibsource = {dblp computer science bibliography, https://dblp.org}
}
a service of Schloss Dagstuhl - Leibniz Center for Informatics