default search action
Evolutionary Computation, Volume 28
Volume 28, Number 1, Spring 2020
- Dunwei Gong, Yiping Liu, Gary G. Yen:
A Meta-Objective Approach for Many-Objective Evolutionary Optimization. 1-25 - Tobias Glasmachers:
Global Convergence of the (1 + 1) Evolution Strategy to a Critical Point. 27-53 - Bo Song, Victor O. K. Li:
A Revisit of Infinite Population Models for Evolutionary Algorithms on Continuous Optimization Problems. 55-85 - John P. Hanley, Donna M. Rizzo, Jeffrey S. Buzas, Margaret J. Eppstein:
A Tandem Evolutionary Algorithm for Identifying Causal Rules from Complex Data. 87-114 - Kai Olav Ellefsen, Joost Huizinga, Jim Tørresen:
Guiding Neuroevolution with Structural Objectives. 115-140 - Masanori Suganuma, Masayuki Kobayashi, Shinichi Shirakawa, Tomoharu Nagao:
Evolution of Deep Convolutional Neural Networks Using Cartesian Genetic Programming. 141-163
Volume 28, Number 2, Summer 2020
- Marcel Wever, Lorijn van Rooijen, Heiko Hamann:
Multioracle Coevolutionary Learning of Requirements Specifications from Examples in On-The-Fly Markets. 165-193 - Leonardo C. T. Bezerra, Manuel López-Ibáñez, Thomas Stützle:
Automatically Designing State-of-the-Art Multi- and Many-Objective Evolutionary Algorithms. 195-226 - Miqing Li, Xin Yao:
What Weights Work for You? Adapting Weights for Any Pareto Front Shape in Decomposition-Based Evolutionary Multiobjective Optimisation. 227-253 - Renato Tinós, L. Darrell Whitley, Gabriela Ochoa:
A New Generalized Partition Crossover for the Traveling Salesman Problem: Tunneling between Local Optima. 255-288 - Yuxin Liu, Yi Mei, Mengjie Zhang, Zili Zhang:
A Predictive-Reactive Approach with Genetic Programming and Cooperative Coevolution for the Uncertain Capacitated Arc Routing Problem. 289-316 - Kevin Swingler:
Learning and Searching Pseudo-Boolean Surrogate Functions from Small Samples. 317-338
Volume 28, Number 3, Fall 2020
- Zhun Fan, Wenji Li, Xinye Cai, Hui Li, Caimin Wei, Qingfu Zhang, Kalyanmoy Deb, Erik D. Goodman:
Difficulty Adjustable and Scalable Constrained Multiobjective Test Problem Toolkit. 339-378 - Mario A. Muñoz, Kate Smith-Miles:
Generating New Space-Filling Test Instances for Continuous Black-Box Optimization. 379-404 - Youhei Akimoto, Nikolaus Hansen:
Diagonal Acceleration for Covariance Matrix Adaptation Evolution Strategies. 405-435 - Andrei Lissovoi, Pietro S. Oliveto, John Alasdair Warwicker:
Simple Hyper-Heuristics Control the Neighbourhood Size of Randomised Local Search Optimally for LeadingOnes*. 437-461 - Patrick Spettel, Hans-Georg Beyer:
Analysis of the (μ/μI, λ)-CSA-ES with Repair by Projection Applied to a Conically Constrained Problem. 463-488 - Roberto De Prisco, Gianluca Zaccagnino, Rocco Zaccagnino:
EvoComposer: An Evolutionary Algorithm for 4-Voice Music Compositions. 489-530
Volume 28, Number 4, Winter 2020
- Andrew Lensen, Bing Xue, Mengjie Zhang:
Genetic Programming for Evolving Similarity Functions for Clustering: Representations and Analysis. 531-561 - Jordan MacLachlan, Yi Mei, Jürgen Branke, Mengjie Zhang:
Genetic Programming Hyper-Heuristics with Vehicle Collaboration for Uncertain Capacitated Arc Routing Problems. 563-593 - Yuichi Nagata:
High-Order Entropy-Based Population Diversity Measures in the Traveling Salesman Problem. 595-619 - Sarah L. Thomson, Gabriela Ochoa, Sébastien Vérel, Nadarajen Veerapen:
Inferring Future Landscapes: Sampling the Local Optima Level. 621-641 - Aneta Neumann, Bradley Alexander, Frank Neumann:
Evolutionary Image Transition and Painting Using Random Walks. 643-675 - Michael Garvie, Ittai Flascher, Andrew Philippides, Adrian Thompson, Phil Husbands:
Evolved Transistor Array Robot Controllers. 677-708 - Hans-Georg Beyer:
Errata: Convergence Analysis of Evolutionary Algorithms That Are Based on the Paradigm of Information Geometry. 709-710
manage site settings
To protect your privacy, all features that rely on external API calls from your browser are turned off by default. You need to opt-in for them to become active. All settings here will be stored as cookies with your web browser. For more information see our F.A.Q.