


default search action
ISWC 2005-2007: URSW
- Paulo Cesar G. da Costa, Claudia d'Amato

, Nicola Fanizzi
, Kathryn B. Laskey, Kenneth J. Laskey, Thomas Lukasiewicz, Matthias Nickles, Michael Pool:
Uncertainty Reasoning for the Semantic Web I, ISWC International Workshops, URSW 2005-2007, Revised Selected and Invited Papers. Lecture Notes in Computer Science 5327, Springer 2008, ISBN 978-3-540-89764-4
Probabilistic and Dempster-Shafer Models
- Pedro M. Domingos, Daniel Lowd, Stanley Kok, Hoifung Poon, Matthew Richardson, Parag Singla:

Just Add Weights: Markov Logic for the Semantic Web. 1-25 - David Poole, Clinton Smyth, Rita Sharma:

Semantic Science: Ontologies, Data and Probabilistic Theories. 26-40 - Paolo Besana, Dave Robertson:

Probabilistic Dialogue Models for Dynamic Ontology Mapping. 41-51 - Andrea Calì, Thomas Lukasiewicz:

An Approach to Probabilistic Data Integration for the Semantic Web. 52-65 - Andrea Calì, Thomas Lukasiewicz, Livia Predoiu, Heiner Stuckenschmidt:

Rule-Based Approaches for Representing Probabilistic Ontology Mappings. 66-87 - Paulo Cesar G. da Costa, Kathryn B. Laskey, Kenneth J. Laskey:

PR-OWL: A Bayesian Ontology Language for the Semantic Web. 88-107 - Francisco Martín-Recuerda, Dave Robertson:

Discovery and Uncertainty in Semantic Web Services. 108-123 - Matthias Nickles, Ruth Cobos

:
An Approach to Description Logic with Support for Propositional Attitudes and Belief Fusion. 124-142 - Andriy Nikolov, Victoria S. Uren

, Enrico Motta
, Anne N. De Roeck:
Using the Dempster-Shafer Theory of Evidence to Resolve ABox Inconsistencies. 143-160 - Hai-Tao Zheng, Bo-Yeong Kang

, Hong-Gee Kim:
An Ontology-Based Bayesian Network Approach for Representing Uncertainty in Clinical Practice Guidelines. 161-173
Fuzzy and Possibilistic Models
- Fernando Bobillo, Miguel Delgado, Juan Gómez-Romero:

A Crisp Representation for Fuzzy with Fuzzy Nominals and General Concept Inclusions. 174-188 - Fernando Bobillo, Miguel Delgado, Juan Gómez-Romero:

Optimizing the Crisp Representation of the Fuzzy Description Logic. 189-206 - Alan Eckhardt, Tomás Horváth

, Dusan Maruscák, Robert Novotny, Peter Vojtás:
Uncertainty Issues and Algorithms in Automating Process Connecting Web and User. 207-223 - Trevor P. Martin, Yun Shen, Ben Azvine:

Granular Association Rules for Multiple Taxonomies: A Mass Assignment Approach. 224-243 - Mauro Mazzieri, Aldo Franco Dragoni

:
A Fuzzy Semantics for the Resource Description Framework. 244-261 - Giorgos Stoilos, Giorgos B. Stamou, Jeff Z. Pan, Nikos Simou, Vassilis Tzouvaras

:
Reasoning with the Fuzzy Description Logic f-: Theory, Practice and Applications. 262-281
Inductive Reasoning and Machine Learning
- Volker Tresp, Markus Bundschus, Achim Rettinger, Yi Huang:

Towards Machine Learning on the Semantic Web. 282-314 - Joaquín Borrego-Díaz, Antonia M. Chávez-González:

Using Cognitive Entropy to Manage Uncertain Concepts in Formal Ontologies. 315-329 - Claudia d'Amato, Nicola Fanizzi, Floriana Esposito:

Analogical Reasoning in Description Logics. 330-347 - Nicola Fanizzi, Claudia d'Amato, Floriana Esposito:

Approximate Measures of Semantic Dissimilarity under Uncertainty. 348-365 - Peter Haase, Johanna Völker:

Ontology Learning and Reasoning - Dealing with Uncertainty and Inconsistency. 366-384
Hybrid Approaches
- Volker Haarslev, Hsueh-Ieng Pai, Nematollaah Shiri:

Uncertainty Reasoning for Ontologies with General TBoxes in Description Logic. 385-402

manage site settings
To protect your privacy, all features that rely on external API calls from your browser are turned off by default. You need to opt-in for them to become active. All settings here will be stored as cookies with your web browser. For more information see our F.A.Q.


Google
Google Scholar
Semantic Scholar
Internet Archive Scholar
CiteSeerX
ORCID














