


default search action
RecSys 2022: Seattle, WA, USA
- Jennifer Golbeck, F. Maxwell Harper, Vanessa Murdock, Michael D. Ekstrand, Bracha Shapira, Justin Basilico, Keld T. Lundgaard, Even Oldridge:

RecSys '22: Sixteenth ACM Conference on Recommender Systems, Seattle, WA, USA, September 18 - 23, 2022. ACM 2022, ISBN 978-1-4503-9278-5
Keynotes
- Mor Naaman:

"My AI must have been broken": How AI Stands to Reshape Human Communication. 1 - Catherine D'Ignazio:

Co-designing ML Models with Data Activists. 2
User Modeling
- Yu Liang

, Martijn C. Willemsen
:
Exploring the longitudinal effects of nudging on users' music genre exploration behavior and listening preferences. 3-13 - Yuncong Li

, Cunxiang Yin, Yancheng He, Guoqiang Xu, Jing Cai, Leeven Luo, Sheng-hua Zhong:
Modeling User Repeat Consumption Behavior for Online Novel Recommendation. 14-24 - Giovanni Gabbolini, Derek G. Bridge:

A User-Centered Investigation of Personal Music Tours. 25-34 - Mihaela Curmei, Andreas A. Haupt, Benjamin Recht, Dylan Hadfield-Menell:

Towards Psychologically-Grounded Dynamic Preference Models. 35-48
Sequential Recommendation
- Wei Cai, Weike Pan, Jingwen Mao, Zhechao Yu, Congfu Xu:

Aspect Re-distribution for Learning Better Item Embeddings in Sequential Recommendation. 49-58 - Zhenrui Yue, Huimin Zeng, Ziyi Kou, Lanyu Shang

, Dong Wang:
Defending Substitution-Based Profile Pollution Attacks on Sequential Recommenders. 59-70 - Ahmed Rashed, Shereen Elsayed, Lars Schmidt-Thieme

:
Context and Attribute-Aware Sequential Recommendation via Cross-Attention. 71-80 - Aleksandr V. Petrov

, Craig Macdonald:
Effective and Efficient Training for Sequential Recommendation using Recency Sampling. 81-91 - Huiyuan Chen, Yusan Lin, Menghai Pan, Lan Wang, Chin-Chia Michael Yeh, Xiaoting Li, Yan Zheng, Fei Wang, Hao Yang:

Denoising Self-Attentive Sequential Recommendation. 92-101
Domain-Specific Recommendation
- Chen Yang, Yupeng Hou, Yang Song, Tao Zhang, Ji-Rong Wen, Wayne Xin Zhao:

Modeling Two-Way Selection Preference for Person-Job Fit. 102-112 - Simone Borg Bruun, Maria Maistro

, Christina Lioma
:
Learning Recommendations from User Actions in the Item-poor Insurance Domain. 113-123 - Yaxiong Wu, Craig Macdonald, Iadh Ounis:

Multi-Modal Dialog State Tracking for Interactive Fashion Recommendation. 124-133 - Maryam Aziz, Jesse Anderton

, Kevin Jamieson, Alice Wang
, Hugues Bouchard, Javed A. Aslam:
Identifying New Podcasts with High General Appeal Using a Pure Exploration Infinitely-Armed Bandit Strategy. 134-144
Fairness and Privacy
- Wondo Rhee

, Sung Min Cho, Bongwon Suh:
Countering Popularity Bias by Regularizing Score Differences. 145-155 - Kiwan Maeng, Haiyu Lu, Luca Melis, John Nguyen, Mike Rabbat, Carole-Jean Wu:

Towards Fair Federated Recommendation Learning: Characterizing the Inter-Dependence of System and Data Heterogeneity. 156-167 - Shuchang Liu, Yingqiang Ge, Shuyuan Xu

, Yongfeng Zhang, Amélie Marian:
Fairness-aware Federated Matrix Factorization. 168-178 - Huazheng Wang, David Zhao, Hongning Wang:

Dynamic Global Sensitivity for Differentially Private Contextual Bandits. 179-187
Diversity and Novelty
- Roberto Pellegrini, Wenjie Zhao, Iain Murray:

Don't recommend the obvious: estimate probability ratios. 188-197 - Kohei Hirata, Daichi Amagata, Sumio Fujita, Takahiro Hara:

Solving Diversity-Aware Maximum Inner Product Search Efficiently and Effectively. 198-207 - Sanne Vrijenhoek

, Gabriel Bénédict, Mateo Gutierrez Granada, Daan Odijk, Maarten de Rijke
:
RADio - Rank-Aware Divergence Metrics to Measure Normative Diversity in News Recommendations. 208-219 - Karthik Shivaram, Ping Liu, Matthew A. Shapiro, Mustafa Bilgic, Aron Culotta:

Reducing Cross-Topic Political Homogenization in Content-Based News Recommendation. 220-228 - Minju Park

, Kyogu Lee:
Exploiting Negative Preference in Content-based Music Recommendation with Contrastive Learning. 229-236
Models and Learning I
- Tzoof Avny Brosh, Amit Livne, Oren Sar Shalom, Bracha Shapira

, Mark Last:
BRUCE: Bundle Recommendation Using Contextualized item Embeddings. 237-245 - Alessandro B. Melchiorre

, Navid Rekabsaz, Christian Ganhör
, Markus Schedl:
ProtoMF: Prototype-based Matrix Factorization for Effective and Explainable Recommendations. 246-256 - Huiyuan Chen, Xiaoting Li, Kaixiong Zhou, Xia Hu, Chin-Chia Michael Yeh, Yan Zheng, Hao Yang:

TinyKG: Memory-Efficient Training Framework for Knowledge Graph Neural Recommender Systems. 257-267 - Weixin Chen

, Mingkai He, Yongxin Ni, Weike Pan, Li Chen, Zhong Ming:
Global and Personalized Graphs for Heterogeneous Sequential Recommendation by Learning Behavior Transitions and User Intentions. 268-277 - Rui Ma

, Ning Liu, Jingsong Yuan, Huafeng Yang, Jiandong Zhang:
CAEN: A Hierarchically Attentive Evolution Network for Item-Attribute-Change-Aware Recommendation in the Growing E-commerce Environment. 278-287 - Zhankui He, Handong Zhao, Tong Yu, Sungchul Kim, Fan Du, Julian J. McAuley

:
Bundle MCR: Towards Conversational Bundle Recommendation. 288-298 - Shijie Geng, Shuchang Liu, Zuohui Fu, Yingqiang Ge, Yongfeng Zhang:

Recommendation as Language Processing (RLP): A Unified Pretrain, Personalized Prompt & Predict Paradigm (P5). 299-315
Sessions and Interaction
- Ori Katz, Oren Barkan, Noam Koenigstein

, Nir Zabari:
Learning to Ride a Buy-Cycle: A Hyper-Convolutional Model for Next Basket Repurchase Recommendation. 316-326 - Shuyang Li, Bodhisattwa Prasad Majumder, Julian J. McAuley

:
Self-Supervised Bot Play for Transcript-Free Conversational Recommendation with Rationales. 327-337 - Minmin Chen, Can Xu, Vince Gatto, Devanshu Jain, Aviral Kumar, Ed H. Chi:

Off-Policy Actor-critic for Recommender Systems. 338-349
Models and Learning II
- Dilina Chandika Rajapakse, Douglas J. Leith

:
Fast and Accurate User Cold-Start Learning Using Monte Carlo Tree Search. 350-359 - Bhumika, Debasis Das

:
MARRS: A Framework for multi-objective risk-aware route recommendation using Multitask-Transformer. 360-368 - Pannaga Shivaswamy, Dario García-García:

Adversary or Friend? An adversarial Approach to Improving Recommender Systems. 369-377 - Arindam Sarkar

, Dipankar Das, Vivek Sembium, Prakash Mandayam Comar:
Dual Attentional Higher Order Factorization Machines. 378-388 - Chen Almagor, Yedid Hoshen:

You Say Factorization Machine, I Say Neural Network - It's All in the Activation. 389-398
Large-Scale Recommendation
- Lin Ning, Steve Chien, Shuang Song, Mei Chen, Yunqi Xue, Devora Berlowitz:

EANA: Reducing Privacy Risk on Large-scale Recommendation Models. 399-407 - Yingcan Wei, Matthias Langer, Fan Yu, Minseok Lee

, Jie Liu, Ji Shi, Zehuan Wang:
A GPU-specialized Inference Parameter Server for Large-Scale Deep Recommendation Models. 408-419
Reproducibility Papers
- Sara Latifi, Dietmar Jannach:

Streaming Session-Based Recommendation: When Graph Neural Networks meet the Neighborhood. 420-426 - Steffen Rendle, Walid Krichene, Li Zhang, Yehuda Koren:

Revisiting the Performance of iALS on Item Recommendation Benchmarks. 427-435 - Aleksandr V. Petrov

, Craig Macdonald:
A Systematic Review and Replicability Study of BERT4Rec for Sequential Recommendation. 436-447
Industry Papers
- Marjan Celikik, Ana Peleteiro-Ramallo, Jacek Wasilewski:

Reusable Self-Attention Recommender Systems in Fashion Industry Applications. 448-451 - Théo Bontempelli, Benjamin Chapus, François Rigaud, Mathieu Morlon, Marin Lorant, Guillaume Salha-Galvan:

Flow Moods: Recommending Music by Moods on Deezer. 452-455 - Yuyan Wang, Long Tao, Xian-Xing Zhang:

Recommending for a multi-sided marketplace with heterogeneous contents. 456-459 - Andreas Grün, Xenija Neufeld:

Translating the Public Service Media Remit into Metrics and Algorithms. 460-463 - Dmitri Goldenberg, Javier Albert:

Personalizing Benefits Allocation Without Spending Money: Utilizing Uplift Modeling in a Budget Constrained Setup. 464-465 - Raul Gomez Bruballa, Lauren Burnham-King, Alessandra Sala:

Learning Users' Preferred Visual Styles in an Image Marketplace. 466-468 - Jan Hartman

, Davorin Kopic:
Exploration with Model Uncertainty at Extreme Scale in Real-Time Bidding. 469-471 - Blaz Skrlj, Adi Schwartz, Jure Ferlez, Davorin Kopic, Naama Ziporin:

Dynamic Surrogate Switching: Sample-Efficient Search for Factorization Machine Configurations in Online Recommendations. 472-475 - Moran Haham:

Evaluation Framework for Cold-Start Techniques in Large-Scale Production Settings. 476-478 - Zachary Harrison, Anish Khazane:

Taxonomic Recommendations of Real Estate Properties with Textual Attribute Information. 479-481 - Dmytro Ivchenko, Dennis Van Der Staay, Colin Taylor, Xing Liu

, Will Feng, Rahul Kindi, Anirudh Sudarshan, Shahin Sefati:
TorchRec: a PyTorch Domain Library for Recommendation Systems. 482-483 - Naime Ranjbar Kermany, Luiz Pizzato, Thireindar Min, Callum Scott, Anna Leontjeva:

A Multi-Stakeholder Recommender System for Rewards Recommendations. 484-487 - Carlos Carvalheira, Tiago Lacerda

, Diogo Gonçalves:
Recommendations: They're in fashion. 488-489 - Petros Katsileros, Nikiforos Mandilaras, Dimitrios Mallis, Vassilis Pitsikalis, Stavros Theodorakis, Gil Chamiel:

An Incremental Learning framework for Large-scale CTR Prediction. 490-493 - Shayak Banerjee, Vijay Pappu, Nilothpal Talukder, Shoya Yoshida, Arnab Bhadury, Allison Schloss, Jasmine Paulino:

Timely Personalization at Peloton: A System and Algorithm for Boosting Time-Relevant Content. 494-498 - Kim Falk, Chen Karako:

Optimizing product recommendations for millions of merchants. 499-501 - Jiajing Xu

, Andrew Zhai, Charles Rosenberg:
Rethinking Personalized Ranking at Pinterest: An End-to-End Approach. 502-505 - Chen Luo, William Headden, Neela Avudaiappan, Haoming Jiang, Tianyu Cao, Qingyu Yin, Yifan Gao, Zheng Li, Rahul Goutam, Haiyang Zhang, Bing Yin:

Query Attribute Recommendation at Amazon Search. 506-508 - Siyong Ma, Puja Das

, Sofia Maria Nikolakaki, Qifeng Chen, Humeyra Topcu Altintas:
Two-Layer Bandit Optimization for Recommendations. 509-511 - Dirk Sierag, Kevin Zielnicki:

Client Time Series Model: a Multi-Target Recommender System based on Temporally-Masked Encoders. 512-515 - Ziyang Tang, Yiheng Duan, Steven Zhu, Stephanie Zhang, Lihong Li:

Estimating Long-term Effects from Experimental Data. 516-518 - Eric Paul Nichols, Ruomeng Xu, Balasubramanian Thiagarajan, Shruti Kamath:

Zillow: Volume Governing for Email and Push Messages. 519-521 - Zhou Qin, Wenyang Liu:

Automate Page Layout Optimization: An Offline Deep Q-Learning Approach. 522-524 - Manisha Verma, Shaunak Mishra:

Recommendation Systems for Ad Creation: A View from the Trenches. 525-527 - Lex Beattie, Dan Taber, Henriette Cramer:

Challenges in Translating Research to Practice for Evaluating Fairness and Bias in Recommendation Systems. 528-530 - Aditya Joshi

, Chin Lin Wong, Diego Marinho de Oliveira, Farhad Zafari, Fernando Mourão, Sabir Ribas, Saumya Pandey:
Imbalanced Data Sparsity as a Source of Unfair Bias in Collaborative Filtering. 531-533 - Zehuan Wang, Yingcan Wei, Minseok Lee

, Matthias Langer, Fan Yu, Jie Liu, Shijie Liu, Daniel G. Abel, Xu Guo, Jianbing Dong
, Ji Shi, Kunlun Li:
Merlin HugeCTR: GPU-accelerated Recommender System Training and Inference. 534-537 - Yoji Tomita, Riku Togashi

, Daisuke Moriwaki:
Matching Theory-based Recommender Systems in Online Dating. 538-541 - Moumita Bhattacharya, Sudarshan Lamkhede:

Augmenting Netflix Search with In-Session Adapted Recommendations. 542-545 - M. Jeffrey Mei, Cole Zuber, Yasaman Khazaeni:

A Lightweight Transformer for Next-Item Product Recommendation. 546-549
Late-Breaking Results
- Antonela Tommasel, Filippo Menczer:

Do Recommender Systems Make Social Media More Susceptible to Misinformation Spreaders? 550-555 - Bruno Sguerra, Viet-Anh Tran, Romain Hennequin:

Discovery Dynamics: Leveraging Repeated Exposure for User and Music Characterization. 556-561 - Congcong Liu, Yuejiang Li, Jian Zhu, Fei Teng, Xiwei Zhao

, Changping Peng, Zhangang Lin, Jingping Shao:
Position Awareness Modeling with Knowledge Distillation for CTR Prediction. 562-566 - Andres Ferraro, Gustavo Ferreira

, Fernando Diaz
, Georgina Born:
Measuring Commonality in Recommendation of Cultural Content: Recommender Systems to Enhance Cultural Citizenship. 567-572 - Walid Shalaby, Sejoon Oh

, Amir Afsharinejad, Srijan Kumar, Xiquan Cui:
M2TRec: Metadata-aware Multi-task Transformer for Large-scale and Cold-start free Session-based Recommendations. 573-578 - Riccardo Nembrini, Costantino Carugno

, Maurizio Ferrari Dacrema
, Paolo Cremonesi:
Towards Recommender Systems with Community Detection and Quantum Computing. 579-585 - Ladislav Peska, Stepán Balcar:

The Effect of Feedback Granularity on Recommender Systems Performance. 586-591 - Jessie J. Smith, Lucia Jayne, Robin Burke:

Recommender Systems and Algorithmic Hate. 592-597 - Hossein A. Rahmani, Mohammadmehdi Naghiaei, Ali Tourani

, Yashar Deldjoo:
Exploring the Impact of Temporal Bias in Point-of-Interest Recommendation. 598-603 - Vojtech Vancura

, Rodrigo Alves
, Petr Kasalický, Pavel Kordík:
Scalable Linear Shallow Autoencoder for Collaborative Filtering. 604-609 - Fernando Benjamín Pérez Maurera, Maurizio Ferrari Dacrema

, Paolo Cremonesi:
Towards the Evaluation of Recommender Systems with Impressions. 610-615 - Giuseppe Spillo

, Cataldo Musto, Marco de Gemmis, Pasquale Lops, Giovanni Semeraro:
Knowledge-aware Recommendations Based on Neuro-Symbolic Graph Embeddings and First-Order Logical Rules. 616-621 - Alexey Grishanov, Anastasia Ianina

, Konstantin V. Vorontsov:
Multiobjective Evaluation of Reinforcement Learning Based Recommender Systems. 622-627
Demonstrations
- Ivica Kostric, Krisztian Balog, Tølløv Alexander Aresvik, Nolwenn Bernard

, Eyvinn Thu Dørheim, Pholit Hantula, Sander Havn-Sørensen, Rune Henriksen, Hengameh Hosseini, Ekaterina Khlybova, Weronika Lajewska, Sindre Ekrheim Mosand, Narmin Orujova:
DAGFiNN: A Conversational Conference Assistant. 628-631 - Karl Higley

, Even Oldridge, Ronay Ak, Sara Rabhi, Gabriel de Souza Pereira Moreira:
Building and Deploying a Multi-Stage Recommender System with Merlin. 632-635 - Jan Safarík, Vojtech Vancura

, Pavel Kordík:
RepSys: Framework for Interactive Evaluation of Recommender Systems. 636-639 - Joey De Pauw

, Koen Ruymbeek, Bart Goethals
:
Who do you think I am? Interactive User Modelling with Item Metadata. 640-643 - Behnam Rahdari

, Peter Brusilovsky, Daqing He
, Khushboo Maulikmihir Thaker, Zhimeng Luo, Young Ji Lee:
HELPeR: An Interactive Recommender System for Ovarian Cancer Patients and Caregivers. 644-647 - Lien Michiels

, Robin Verachtert
, Bart Goethals
:
RecPack: An(other) Experimentation Toolkit for Top-N Recommendation using Implicit Feedback Data. 648-651
Workshops and Challenge
- Eva Zangerle, Christine Bauer

, Alan Said:
Second Workshop: Perspectives on the Evaluation of Recommender Systems (PERSPECTIVES 2022). 652-653 - Olivier Jeunen, Thorsten Joachims, Harrie Oosterhuis, Yuta Saito, Flavian Vasile:

CONSEQUENCES - Causality, Counterfactuals and Sequential Decision-Making for Recommender Systems. 654-657 - Himan Abdollahpouri, Shaghayegh Sahebi, Mehdi Elahi, Masoud Mansoury, Babak Loni, Zahra Nazari, Maria Dimakopoulou:

MORS 2022: The Second Workshop on Multi-Objective Recommender Systems. 658-660 - João Vinagre

, Marie Al-Ghossein, Alípio Mário Jorge
, Albert Bifet, Ladislav Peska:
ORSUM 2022 - 5th Workshop on Online Recommender Systems and User Modeling. 661-662 - Vito Walter Anelli, Pierpaolo Basile

, Gerard de Melo, Francesco Maria Donini
, Antonio Ferrara
, Cataldo Musto, Fedelucio Narducci, Azzurra Ragone, Markus Zanker:
Fourth Knowledge-aware and Conversational Recommender Systems Workshop (KaRS). 663-666 - Peter Brusilovsky, Marco de Gemmis, Alexander Felfernig, Pasquale Lops, Marco Polignano, Giovanni Semeraro, Martijn C. Willemsen

:
Joint Workshop on Interfaces and Human Decision Making for Recommender Systems (IntRS'22). 667-670 - Toine Bogers, David Graus

, Mesut Kaya
, Francisco Gutiérrez, Sepideh Mesbah, Chris Johnson:
Second Workshop on Recommender Systems for Human Resources (RecSys in HR 2022). 671-674 - Joseph A. Konstan

, Ajith Muralidharan, Ankan Saha, Shilad Sen, Mengting Wan, Longqi Yang:
RecWork: Workshop on Recommender Systems for the Future of Work. 675-677 - Julia Neidhardt, Wolfgang Wörndl, Tsvi Kuflik, Dmitri Goldenberg, Markus Zanker:

Workshop on Recommenders in Tourism (RecTour). 678-679 - Reza Shirvany, Humberto Jesús Corona Pampín:

Fourth Workshop on Recommender Systems in Fashion and Retail - fashionXrecsys2022. 680-683 - Richard Liaw, Paige Bailey, Ying Li, Maria Dimakopoulou, Yves Raimond:

REVEAL 2022: Reinforcement Learning-Based Recommender Systems at Scale. 684-685 - Nasim Sonboli, Toshihiro Kamishima, Amifa Raj, Luca Belli, Robin Burke:

FAccTRec 2022: The 5th Workshop on Responsible Recommendation. 686-687 - Toine Bogers, Cataldo Musto, David (Xuejun) Wang, Alexander Felfernig, Simone Borg Bruun, Giovanni Semeraro, Yong Zheng:

FinRec: The 3rd International Workshop on Personalization & Recommender Systems in Financial Services. 688-690 - Gediminas Adomavicius, Konstantin Bauman

, Bamshad Mobasher
, Francesco Ricci, Alexander Tuzhilin, Moshe Unger:
CARS: Workshop on Context-Aware Recommender Systems 2022. 691-693 - Nick Landia, Frederick Cheung, Donna North, Saikishore Kalloori, Abhishek Srivastava, Bruce Ferwerda:

RecSys Challenge 2022: Fashion Purchase Prediction. 694-697
Tutorials
- Weiwen Liu

, Jiarui Qin
, Ruiming Tang
, Bo Chen
:
Neural Re-ranking for Multi-stage Recommender Systems. 698-699 - Christy D. Bergman, Kourosh Hakhamaneshi:

Hands-on Reinforcement Learning for Recommender Systems - From Bandits to SlateQ to Offline RL with Ray RLlib. 700-701 - Francesco Barile

, Amra Delic, Ladislav Peska:
Tutorial on Offline Evaluation for Group Recommender Systems. 702-705 - Ronay Ak, Benedikt Schifferer, Sara Rabhi, Gabriel de Souza Pereira Moreira:

Training and Deploying Multi-Stage Recommender Systems. 706-707 - Dmitry Ustalov, Natalia Fedorova, Nikita Pavlichenko:

Improving Recommender Systems with Human-in-the-Loop. 708-709 - Giacomo Balloccu, Ludovico Boratto, Gianni Fenu, Mirko Marras:

Hands on Explainable Recommender Systems with Knowledge Graphs. 710-713 - Elisabeth Lex, Markus Schedl:

Psychology-informed Recommender Systems Tutorial. 714-717 - Omprakash Sonie:

Conversational Recommender System Using Deep Reinforcement Learning. 718-719
Doctoral Symposium
- Khushboo Thaker:

KA-Recsys: Knowledge Appropriate Patient Focused Recommendation Technologies. 720-721 - Xinyi Li, Edward C. Malthouse:

An Interpretable Neural Network Model for Bundle Recommendations: Doctoral Symposium, Extended Abstract. 722-723 - Patrik Dokoupil:

Long-term fairness for Group Recommender Systems with Large Groups. 724-726 - Vincenzo Paparella:

Pursuing Optimal Trade-Off Solutions in Multi-Objective Recommender Systems. 727-729 - Tendai Mukande

:
Heterogeneous Graph Representation Learning for multi-target Cross-Domain Recommendation. 730-734 - Maxwell Szymanski

, Katrien Verbert, Vero Vanden Abeele
:
Designing and evaluating explainable AI for non-AI experts: challenges and opportunities. 735-736 - Jessie J. Smith:

Developing a Human-Centered Framework for Transparency in Fairness-Aware Recommender Systems. 737-738 - Nicolò Felicioni

:
Enhancing Counterfactual Evaluation and Learning for Recommendation Systems. 739-741 - Amifa Raj:

Fair Ranking Metrics. 742-743

manage site settings
To protect your privacy, all features that rely on external API calls from your browser are turned off by default. You need to opt-in for them to become active. All settings here will be stored as cookies with your web browser. For more information see our F.A.Q.


Google
Google Scholar
Semantic Scholar
Internet Archive Scholar
CiteSeerX
ORCID














