


default search action
Mturk@HLT-NAACL 2010: Los Angeles, USA
- Chris Callison-Burch, Mark Dredze:

Proceedings of the 2010 Workshop on Creating Speech and Language Data with Amazon's Mechanical Turk, Los Angeles, USA, June 6, 2010. Association for Computational Linguistics 2010 - Chris Callison-Burch, Mark Dredze:

Creating Speech and Language Data With Amazon's Mechanical Turk. 1-12 - Mukund Jha, Jacob Andreas, Kapil Thadani, Sara Rosenthal, Kathleen R. McKeown:

Corpus Creation for New Genres: A Crowdsourced Approach to PP Attachment. 13-20 - Gabriel Parent, Maxine Eskénazi:

Clustering dictionary definitions using Amazon Mechanical Turk. 21-29 - Qin Gao, Stephan Vogel:

Semi-supervised Word Alignment with Mechanical Turk. 30-34 - Michael Heilman, Noah A. Smith:

Rating Computer-Generated Questions with Mechanical Turk. 35-40 - Scott Novotney, Chris Callison-Burch:

Crowdsourced Accessibility: Elicitation of Wikipedia Articles. 41-44 - Audrey N. Le, Jerome Ajot, Mark A. Przybocki, Stephanie M. Strassel:

Document Image Collection Using Amazon's Mechanical Turk. 45-52 - Keelan Evanini, Derrick Higgins, Klaus Zechner:

Using Amazon Mechanical Turk for Transcription of Non-Native Speech. 53-56 - Michael J. Denkowski, Alon Lavie:

Exploring Normalization Techniques for Human Judgments of Machine Translation Adequacy Collected Using Amazon Mechanical Turk. 57-61 - Vamshi Ambati, Stephan Vogel:

Can Crowds Build parallel corpora for Machine Translation Systems? 62-65 - Michael J. Denkowski, Hassan Al-Haj, Alon Lavie:

Turker-Assisted Paraphrasing for English-Arabic Machine Translation. 66-70 - Nolan Lawson, Kevin Eustice, Mike Perkowitz, Meliha Yetisgen-Yildiz:

Annotating Large Email Datasets for Named Entity Recognition with Mechanical Turk. 71-79 - Tim Finin, William Murnane, Anand Karandikar, Nicholas Keller, Justin Martineau, Mark Dredze:

Annotating Named Entities in Twitter Data with Crowdsourcing. 80-88 - Chiara Higgins, Elizabeth McGrath, Laila Moretto:

MTurk Crowdsourcing: A Viable Method for Rapid Discovery of Arabic Nicknames? 89-92 - Omar Zaidan, Juri Ganitkevitch:

An Enriched MT Grammar for Under $100. 93-98 - Matthew Marge, Satanjeev Banerjee, Alexander I. Rudnicky:

Using the Amazon Mechanical Turk to Transcribe and Annotate Meeting Speech for Extractive Summarization. 99-107 - Ann Irvine, Alexandre Klementiev:

Using Mechanical Turk to Annotate Lexicons for Less Commonly Used Languages. 108-113 - Bart Mellebeek, Francesc Benavent, Jens Grivolla, Joan Codina, Marta R. Costa-jussà, Rafael E. Banchs:

Opinion Mining of Spanish Customer Comments with Non-Expert Annotations on Mechanical Turk. 114-121 - Robert Munro, Steven Bethard, Victor Kuperman, Vicky Tzuyin Lai, Robin Melnick, Christopher Potts, Tyler Schnoebelen, Harry J. Tily:

Crowdsourcing and language studies: the new generation of linguistic data. 122-130 - Jonathan Chang:

Not-So-Latent Dirichlet Allocation: Collapsed Gibbs Sampling Using Human Judgments. 131-138 - Cyrus Rashtchian, Peter Young, Micah Hodosh, Julia Hockenmaier:

Collecting Image Annotations Using Amazon's Mechanical Turk. 139-147 - Dan Gillick, Yang Liu:

Non-Expert Evaluation of Summarization Systems is Risky. 148-151 - Tae Yano, Philip Resnik, Noah A. Smith:

Shedding (a Thousand Points of) Light on Biased Language. 152-158 - Jonathan Gordon, Benjamin Van Durme, Lenhart K. Schubert:

Evaluation of Commonsense Knowledge with Mechanical Turk. 159-162 - Rui Wang, Chris Callison-Burch:

Cheap Facts and Counter-Facts. 163-167 - Stephen A. Kunath, Steven H. Weinberger:

The Wisdom of the Crowdâs Ear: Speech Accent Rating and Annotation with Amazon Mechanical Turk. 168-171 - Catherine Grady, Matthew Lease:

Crowdsourcing Document Relevance Assessment with Mechanical Turk. 172-179 - Meliha Yetisgen-Yildiz, Imre Solti, Fei Xia, Scott R. Halgrim:

Preliminary Experiments with Amazon's Mechanical Turk for Annotating Medical Named Entities. 180-183 - Ian R. Lane, Matthias Eck, Kay Rottmann, Alex Waibel:

Tools for Collecting Speech Corpora via Mechanical-Turk. 184-187 - Nitin Madnani, Jordan L. Boyd-Graber, Philip Resnik:

Measuring Transitivity Using Untrained Annotators. 188-194 - Cem Akkaya, Alexander Conrad, Janyce Wiebe, Rada Mihalcea:

Amazon Mechanical Turk for Subjectivity Word Sense Disambiguation. 195-203 - Matthew R. Gormley, Adam Gerber, Mary P. Harper, Mark Dredze:

Non-Expert Correction of Automatically Generated Relation Annotations. 204-207 - Michael Bloodgood, Chris Callison-Burch:

Using Mechanical Turk to Build Machine Translation Evaluation Sets. 208-211 - Matteo Negri, Yashar Mehdad:

Creating a Bi-lingual Entailment Corpus through Translations with Mechanical Turk: $100 for a 10-day Rush. 212-216 - Olivia Buzek, Philip Resnik, Ben Bederson:

Error Driven Paraphrase Annotation using Mechanical Turk. 217-221

manage site settings
To protect your privacy, all features that rely on external API calls from your browser are turned off by default. You need to opt-in for them to become active. All settings here will be stored as cookies with your web browser. For more information see our F.A.Q.


Google
Google Scholar
Semantic Scholar
Internet Archive Scholar
CiteSeerX
ORCID














