


default search action
AITest 2019: Newark, CA, USA
- IEEE International Conference On Artificial Intelligence Testing, AITest 2019, Newark, CA, USA, April 4-9, 2019. IEEE 2019, ISBN 978-1-7281-0492-8

- Noureddine Aribi

, Nadjib Lazaar
, Yahia Lebbah, Samir Loudni, Mehdi Maamar:
A Multiple Fault Localization Approach Based on Multicriteria Analytical Hierarchy Process. 1-8 - Ayan Banerjee

, Imane Lamrani, Prajwal Paudyal, Sandeep K. S. Gupta:
Generation of Movement Explanations for Testing Gesture Based Co-Operative Learning Applications. 9-16 - Sulaiman Alhaidari, Mohamed A. Zohdy:

Network Anomaly Detection Using Two-Dimensional Hidden Markov Model Based Viterbi Algorithm. 17-18 - Sahar Tahvili, Leo Hatvani

, Michael Felderer
, Wasif Afzal
, Markus Bohlin:
Automated Functional Dependency Detection Between Test Cases Using Doc2Vec and Clustering. 19-26 - Jens Henriksson, Christian Berger, Markus Borg, Lars Tornberg, Cristofer Englund, Sankar Raman Sathyamoorthy, Stig Ursing:

Towards Structured Evaluation of Deep Neural Network Supervisors. 27-34 - Shunhui Ji, Qin Chen, Pengcheng Zhang:

Neural Network Based Test Case Generation for Data-Flow Oriented Testing. 35-36 - Josip Bozic

, Oliver A. Tazl, Franz Wotawa
:
Chatbot Testing Using AI Planning. 37-44 - Iosif Itkin

, Anna Gromova, Anton Sitnikov, Dmitry Legchikov, Evgenii Tsymbalov, Rostislav Yavorskiy, Andrey Novikov, Kirill Rudakov:
User-Assisted Log Analysis for Quality Control of Distributed Fintech Applications. 45-51 - Kesav Viswanadha, Shivkumar Shivaji, Ram Shanmugam, Seounghan Song, Seoyoung Choi, Naresh Kumar:

ATARI: Autonomous Testing and Real-Time Intelligence - A Framework for Autonomously Testing Modern Applications. 52-54 - Jonathan Guichard, Elayne Ruane

, Ross Smith, Dan Bean, Anthony Ventresque
:
Assessing the Robustness of Conversational Agents using Paraphrases. 55-62 - Taejoon Byun, Vaibhav Sharma, Abhishek Vijayakumar, Sanjai Rayadurgam, Darren D. Cofer:

Input Prioritization for Testing Neural Networks. 63-70 - Pengcheng Zhang, Qiyin Dai, Shunhui Ji:

Condition-Guided Adversarial Generative Testing for Deep Learning Systems. 71-72 - Carlo Ieva, Arnaud Gotlieb, Souhila Kaci, Nadjib Lazaar

:
Deploying Smart Program Understanding on a Large Code Base. 73-80 - Tariq M. King

, Jason Arbon, Dionny Santiago
, David Adamo, Wendy Chin, Ram Shanmugam:
AI for Testing Today and Tomorrow: Industry Perspectives. 81-88 - Yanshan Chen, Ziyuan Wang, Dong Wang, Yongming Yao, Zhenyu Chen:

Behavior Pattern-Driven Test Case Selection for Deep Neural Networks. 89-90 - Xin Yin, Vincenzo Musco, Iulian Neamtiu, Usman Roshan:

Statistically Rigorous Testing of Clustering Implementations. 91-98 - Marc Roper

:
Using Machine Learning to Classify Test Outcomes. 99-100 - Dusica Marijan, Arnaud Gotlieb, Mohit Kumar Ahuja:

Challenges of Testing Machine Learning Based Systems. 101-102 - Cristian Augusto

, Jesús Morán
, Claudio de la Riva, Javier Tuya:
Test-Driven Anonymization for Artificial Intelligence. 103-110 - Koosha Sadeghi, Ayan Banerjee

, Sandeep K. S. Gupta:
An Analytical Framework for Security-Tuning of Artificial Intelligence Applications Under Attack. 111-118 - Dong Wang, Ziyuan Wang, Chunrong Fang

, Yanshan Chen, Zhenyu Chen:
DeepPath: Path-Driven Testing Criteria for Deep Neural Networks. 119-120 - Mathieu Collet, Arnaud Gotlieb, Nadjib Lazaar

, Morten Mossige:
Stress Testing of Single-Arm Robots Through Constraint-Based Generation of Continuous Trajectories. 121-128 - Clemens Mühlbacher, Gerald Steinbauer, Michael Reip, Stephan Gspandl:

Constraint-Based Testing of An Industrial Multi-Robot Navigation System. 129-137 - Claude Michel, Michel Rueher:

Dedicated Search Strategies For Finding Critical Counterexamples In Programs With Floating Point Computations. 138-139 - Morteza Pourreza Shahri, Madhusudan Srinivasan

, Gillian Reynolds
, Diane Bimczok, Indika Kahanda
, Upulee Kanewala
:
Metamorphic Testing for Quality Assurance of Protein Function Prediction Tools. 140-148 - Hong Zhu, Dongmei Liu, Ian Bayley, Rachel Harrison, Fabio Cuzzolin:

Datamorphic Testing: A Method for Testing Intelligent Applications. 149-156 - Prashanta Saha

, Upulee Kanewala:
Fault Detection Effectiveness of Metamorphic Relations Developed for Testing Supervised Classifiers. 157-164

manage site settings
To protect your privacy, all features that rely on external API calls from your browser are turned off by default. You need to opt-in for them to become active. All settings here will be stored as cookies with your web browser. For more information see our F.A.Q.


Google
Google Scholar
Semantic Scholar
Internet Archive Scholar
CiteSeerX
ORCID














