Please note: This is a beta version of the new dblp website.
You can find the classic dblp view of this page here.
You can find the classic dblp view of this page here.
Xizhong Zheng
2010 – today
- 2012
[j32]Xizhong Zheng, Robert Rettinger: Point-Separable Classes of Simple Computable Planar Curves. Logical Methods in Computer Science 8(3) (2012)- 2010
[c27]Matthew S. Bauer, Xizhong Zheng: On the Weak Computability of Continuous Real Functions. CCA 2010: 29-40
[e1]Xizhong Zheng, Ning Zhong (Eds.): Proceedings Seventh International Conference on Computability and Complexity in Analysis. EPTCS 24, 2010
2000 – 2009
- 2009
[c26]Robert Rettinger, Xizhong Zheng: On the Computability of Rectifiable Simple Curve (Extended Abstract). CCA 2009
[c25]Robert Rettinger, Xizhong Zheng: Points on Computable Curves of Computable Lengths. MFCS 2009: 736-743- 2008
[j31]Xizhong Zheng: Finitely Bounded Effective Computability. Electr. Notes Theor. Comput. Sci. 202: 255-265 (2008)
[j30]
[j29]Xizhong Zheng: Classification of Computably Approximable Real Numbers. Theory Comput. Syst. 43(3-4): 603-624 (2008)- 2007
[j28]Qingliang Chen, Kaile Su, Xizhong Zheng: Primitive Recursiveness of Real Numbers under Different Representations. Electr. Notes Theor. Comput. Sci. 167: 303-324 (2007)
[j27]Xizhong Zheng: Classification of the Computable Approximations by Divergence Boundings. Electr. Notes Theor. Comput. Sci. 167: 325-344 (2007)
[j26]
[j25]Ker-I Ko, Klaus Weihrauch, Xizhong Zheng: Editorial: Math. Log. Quart. 4-5/2007. Math. Log. Q. 53(4-5): 325 (2007)
[j24]Qingliang Chen, Kaile Su, Xizhong Zheng: Primitive recursive real numbers. Math. Log. Q. 53(4-5): 365-380 (2007)
[c24]Xizhong Zheng: Bounded Computable Enumerability and Hierarchy of Computably Enumerable Reals. COCOON 2007: 327-337- 2006
[j23]Robert Rettinger, Xizhong Zheng: A hierarchy of Turing degrees of divergence bounded computable real numbers. J. Complexity 22(6): 818-826 (2006)
[j22]Kaile Su, Qingliang Chen, Abdul Sattar, Weiya Yue, Guanfeng Lv, Xizhong Zheng: Verification of Authentication Protocols for Epistemic Goals via SAT Compilation. J. Comput. Sci. Technol. 21(6): 932-943 (2006)
[j21]Xizhong Zheng, Robert Rettinger: A Reference Correction of "Effective Jordan Decomposition". Theory Comput. Syst. 39(2): 385-385 (2006)
[j20]Xizhong Zheng, Dianchen Lu, Kejin Bao: Divergence bounded computable real numbers. Theor. Comput. Sci. 351(1): 27-38 (2006)
[c23]- 2005
[j19]Xizhong Zheng, Robert Rettinger: A Note On the Turing Degrees of Divergence Bounded Computable Reals. Electr. Notes Theor. Comput. Sci. 120: 231-237 (2005)
[j18]Xizhong Zheng, Robert Rettinger, George Barmpalias: h-monotonically computable real numbers. Math. Log. Q. 51(2): 157-170 (2005)
[j17]Xizhong Zheng, Robert Rettinger: Effective Jordan Decomposition. Theory Comput. Syst. 38(2): 189-209 (2005)
[j16]Xizhong Zheng, Robert Rettinger, Romain Gengler: Closure Properties of Real Number Classes under CBV Functions. Theory Comput. Syst. 38(6): 701-729 (2005)
[c22]Robert Rettinger, Xizhong Zheng: A Hierarchy of Turing Degrees for Divergence Bounded Computable Real Numbers. CCA 2005: 199-209
[c21]Robert Rettinger, Xizhong Zheng: On the Turing Degrees of Divergence Bounded Computable Reals. CiE 2005: 418-428
[c20]- 2004
[j15]Rod Downey, Guohua Wu, Xizhong Zheng: Degrees of d. c. e. reals. Math. Log. Q. 50(4-5): 345-350 (2004)
[j14]Xizhong Zheng, Robert Rettinger: Weak computability and representation of reals. Math. Log. Q. 50(4-5): 431-442 (2004)
[c19]- 2003
[j13]Robert Rettinger, Xizhong Zheng: On the hierarchy and extension of monotonically computable real numbers. J. Complexity 19(5): 672-691 (2003)
[j12]Xizhong Zheng: On the Turing Degrees of Weakly Computable Real Numbers. J. Log. Comput. 13(2): 159-172 (2003)
[c18]
[c17]Xizhong Zheng, George Barmpalias: On the Monotonic Computability of Semi-computable Real Numbers. DMTCS 2003: 290-300
[c16]Xizhong Zheng, Robert Rettinger, Romain Gengler: Ershov's Hierarchy of Real Numbers. MFCS 2003: 681-690
[c15]Xizhong Zheng, Robert Rettinger, Burchard von Braunmühl: On the Effective Jordan Decomposability. STACS 2003: 167-178- 2002
[j11]Xizhong Zheng, Robert Rettinger, Burchard von Braunmühl: Effectively Absolute Continuity and Effective Jordan Decomposability. Electr. Notes Theor. Comput. Sci. 66(1): 213-224 (2002)
[j10]Robert Rettinger, Xizhong Zheng, Romain Gengler, Burchard von Braunmühl: Monotonically Computable Real Numbers. Math. Log. Q. 48(3): 459-479 (2002)
[j9]
[j8]Xizhong Zheng: The closure properties on real numbers under limits and computable operators. Theor. Comput. Sci. 284(2): 499-518 (2002)
[c14]Robert Rettinger, Xizhong Zheng: Burchard von Braunmühl, Computable Real Functions of Bounded Variation and Semi-computable Real Numbers. COCOON 2002: 47-56- 2001
[j7]Xizhong Zheng, Klaus Weihrauch: The Arithmetical Hierarchy of Real Numbers. Math. Log. Q. 47(1): 51-65 (2001)
[c13]Robert Rettinger, Xizhong Zheng, Romain Gengler, Burchard von Braunmühl: Weakly Computable Real Numbers and Total Computable Real Functions. COCOON 2001: 586-595
[c12]Robert Rettinger, Xizhong Zheng: Hierarchy of Monotonically Computable Real Numbers. MFCS 2001: 633-644- 2000
[j6]Klaus Ambos-Spies, Klaus Weihrauch, Xizhong Zheng: Weakly Computable Real Numbers. J. Complexity 16(4): 676-690 (2000)
[j5]Klaus Weihrauch, Xizhong Zheng: Computability on continuous, lower semi-continuous and upper semi-continuous real functions. Theor. Comput. Sci. 234(1-2): 109-133 (2000)
[c11]Xizhong Zheng: Closure Properties of Real Number Classes under Limits and Computable Operators. COCOON 2000: 170-179
1990 – 1999
- 1999
[j4]Vasco Brattka, Xizhong Zheng, Klaus Weihrauch: Approaches to Effective Semi-Continuity of Real Functions. Math. Log. Q. 45: 481-496 (1999)
[j3]Klaus Weihrauch, Xizhong Zheng: Effectiveness of the Global Modulus of Continuity on Metric Spaces. Theor. Comput. Sci. 219(1-2): 439-450 (1999)
[c10]
[c9]- 1998
[c8]Vasco Brattka, Klaus Weihrauch, Xizhong Zheng: Approaches to Effective Semi-continuity of Real Functions. COCOON 1998: 184-193
[c7]Klaus Weihrauch, Xizhong Zheng: A Finite Hierarchy of the Recursively Enumerable Real Numbers. MFCS 1998: 798-806- 1997
[j2]Klaus Ambos-Spies, Sebastiaan Terwijn, Xizhong Zheng: Resource Bounded Randomness and Weakly Complete Problems. Theor. Comput. Sci. 172(1-2): 195-207 (1997)
[c6]Klaus Weihrauch, Xizhong Zheng: Computability on Continuou, Lower Semi-continuous and Upper Semi-continuous Real Functions. COCOON 1997: 166-175
[c5]Klaus Weihrauch, Xizhong Zheng: Effectiveness of the Global Modulus of Continuity on Metric Spaces. Category Theory and Computer Science 1997: 210-219- 1996
[c4]Klaus Weihrauch, Xizhong Zheng: Computability on Continuous, Lower Semi-Continuous and Upper Semi-Continuous Real Functions. CCA 1996
[c3]Klaus Ambos-Spies, Elvira Mayordomo, Xizhong Zheng: A Comparison of Weak Completeness Notions. IEEE Conference on Computational Complexity 1996: 171-178
[c2]Klaus Ambos-Spies, Elvira Mayordomo, Yongge Wang, Xizhong Zheng: Resource-Bounded Balanced Genericity, Stochasticity and Weak Randomness. STACS 1996: 63-74- 1994
[c1]Klaus Ambos-Spies, Sebastiaan Terwijn, Xizhong Zheng: Resource Bounded Randomness and Weakly Complete Problems. ISAAC 1994: 369-377- 1993
[j1]Xizhong Zheng: On the Maximality of Some Pairs of p-t Degrees. Notre Dame Journal of Formal Logic 34(1): 29-35 (1993)
Coauthor Index
data released under the ODC-BY 1.0 license. See also our legal information page
last updated on 2013-10-02 11:21 CEST by the dblp team



