Please note: This is a beta version of the new dblp website.
You can find the classic dblp view of this page here.
You can find the classic dblp view of this page here.
Damien Woods
Author information
- Caltech
2010 – today
- 2013
[c23]
[c22]Erik D. Demaine, Matthew J. Patitz, Trent A. Rogers, Robert T. Schweller, Scott M. Summers, Damien Woods: The Two-Handed Tile Assembly Model Is Not Intrinsically Universal. ICALP (1) 2013: 400-412
[c21]Damien Woods, Ho-Lin Chen, Scott Goodfriend, Nadine Dabby, Erik Winfree, Peng Yin: Active self-assembly of algorithmic shapes and patterns in polylogarithmic time. ITCS 2013: 353-354
[i12]Damien Woods, Ho-Lin Chen, Scott Goodfriend, Nadine Dabby, Erik Winfree, Peng Yin: Active Self-Assembly of Algorithmic Shapes and Patterns in Polylogarithmic Time. CoRR abs/1301.2626 (2013)
[i11]Turlough Neary, Damien Woods, Niall Murphy, Rainer Glaschick: Wang's B machines are efficiently universal, as is Hasenjaeger's small universal electromechanical toy. CoRR abs/1304.0053 (2013)
[i10]Pierre-Etienne Meunier, Matthew J. Patitz, Scott M. Summers, Guillaume Theyssier, Andrew Winslow, Damien Woods: Intrinsic universality in tile self-assembly requires cooperation. CoRR abs/1304.1679 (2013)
[i9]Erik D. Demaine, Matthew J. Patitz, Trent A. Rogers, Robert T. Schweller, Scott M. Summers, Damien Woods: The two-handed tile assembly model is not intrinsically universal. CoRR abs/1306.6710 (2013)
[i8]Damien Woods: Intrinsic universality and the computational power of self-assembly. CoRR abs/1309.1265 (2013)- 2012
[c20]David Doty, Jack H. Lutz, Matthew J. Patitz, Robert T. Schweller, Scott M. Summers, Damien Woods: The Tile Assembly Model is Intrinsically Universal. FOCS 2012: 302-310
[c19]Turlough Neary, Damien Woods: The Complexity of Small Universal Turing Machines: A Survey. SOFSEM 2012: 385-405
[i7]Niall Murphy, Damien Woods: AND and/or OR: Uniform Polynomial-Size Circuits. CoRR abs/1212.3282 (2012)
[i6]Erik D. Demaine, Martin L. Demaine, Sándor P. Fekete, Matthew J. Patitz, Robert T. Schweller, Andrew Winslow, Damien Woods: One Tile to Rule Them All: Simulating Any Turing Machine, Tile Assembly System, or Tiling System with a Single Puzzle Piece. CoRR abs/1212.4756 (2012)- 2011
[j10]Niall Murphy, Damien Woods: The computational power of membrane systems under tight uniformity conditions. Natural Computing 10(1): 613-632 (2011)
[j9]
[i5]Turlough Neary, Damien Woods: The complexity of small universal Turing machines: a survey. CoRR abs/1110.2230 (2011)
[i4]David Doty, Jack H. Lutz, Matthew J. Patitz, Robert T. Schweller, Scott M. Summers, Damien Woods: The tile assembly model is intrinsically universal. CoRR abs/1111.3097 (2011)- 2010
[c18]David Doty, Jack H. Lutz, Matthew J. Patitz, Scott M. Summers, Damien Woods: Intrinsic Universality in Self-Assembly. STACS 2010: 275-286
[i3]David Doty, Jack H. Lutz, Matthew J. Patitz, Scott M. Summers, Damien Woods: Intrinsic Universality in Self-Assembly. CoRR abs/1001.0208 (2010)
2000 – 2009
- 2009
[j8]Damien Woods, Thomas J. Naughton: Optical computing. Applied Mathematics and Computation 215(4): 1417-1430 (2009)
[j7]Turlough Neary, Damien Woods: Four Small Universal Turing Machines. Fundam. Inform. 91(1): 123-144 (2009)
[j6]Damien Woods, Turlough Neary: Small Semi-Weakly Universal Turing Machines. Fundam. Inform. 91(1): 179-195 (2009)
[j5]Damien Woods, Turlough Neary: The complexity of small universal Turing machines: A survey. Theor. Comput. Sci. 410(4-5): 443-450 (2009)
[c17]
[c16]David Doty, Jack H. Lutz, Matthew J. Patitz, Scott M. Summers, Damien Woods: Random Number Selection in Self-assembly. UC 2009: 143-157
[c15]Damien Woods, Niall Murphy, Mario J. Pérez-Jiménez, Agustin Riscos-Núñez: Membrane Dissolution and Division in P. UC 2009: 262-276
[e1]Turlough Neary, Damien Woods, Anthony Karel Seda, Niall Murphy (Eds.): Proceedings International Workshop on The Complexity of Simple Programs, Cork, Ireland, 6-7th December 2008. EPTCS 1, 2009
[r1]Thomas J. Naughton, Damien Woods: Optical Computing. Encyclopedia of Complexity and Systems Science 2009: 6388-6407- 2008
[j4]Niall Murphy, Thomas J. Naughton, Damien Woods, B. Henley, K. Mcdermott, E. Duffy, P. J. M. Van Der Burgt, N. Woods: Implementations of a Model of Physical Sorting. IJUC 4(1): 3-12 (2008)
[j3]Damien Woods, J. Paul Gibson: Lower bounds on the computational power of an optical model of computation. Natural Computing 7(1): 95-108 (2008)
[c14]
[c13]Niall Murphy, Damien Woods: A Characterisation of NL Using Membrane Systems without Charges and Dissolution. UC 2008: 164-176
[c12]Niall Murphy, Damien Woods: On acceptance conditions for membrane systems: characterisations of L and NL. CSP 2008: 172-184- 2007
[c11]
[c10]
[c9]
[c8]Niall Murphy, Damien Woods: Active Membrane Systems Without Charges and Using Only Symmetric Elementary Division Characterise P. Workshop on Membrane Computing 2007: 367-384
[i2]- 2006
[j2]Turlough Neary, Damien Woods: Small fast universal Turing machines. Theor. Comput. Sci. 362(1-3): 171-195 (2006)
[c7]Damien Woods, Turlough Neary: On the time complexity of 2-tag systems and small universal Turing machines. FOCS 2006: 439-448
[c6]Turlough Neary, Damien Woods: P-completeness of Cellular Automaton Rule 110. ICALP (1) 2006: 132-143
[c5]
[i1]Damien Woods, Turlough Neary: On the time complexity of 2-tag systems and small universal Turing machines. CoRR abs/cs/0612089 (2006)- 2005
[j1]Damien Woods, Thomas J. Naughton: An optical model of computation. Theor. Comput. Sci. 334(1-3): 227-258 (2005)
[c4]
[c3]Damien Woods: Upper Bounds on the Computational Power of an Optical Model of Computation. ISAAC 2005: 777-788
[c2]Damien Woods, J. Paul Gibson: Lower Bounds on the Computational Power of an Optical Model of Computation. UC 2005: 237-250- 2001
[c1]Thomas J. Naughton, Damien Woods: On the Computational Power of a Continuous-Space Optical Model of Computation. MCU 2001: 288-299
Coauthor Index
data released under the ODC-BY 1.0 license. See also our legal information page
last updated on 2013-10-17 21:25 CEST by the dblp team



