Please note: This is a beta version of the new dblp website.
You can find the classic dblp view of this page here.
You can find the classic dblp view of this page here.
Ian H. Sloan
2010 – today
- 2013
[j59]Michael Griebel, Frances Y. Kuo, Ian H. Sloan: The smoothing effect of integration in Rd and the ANOVA decomposition. Math. Comput. 82(281) (2013)- 2012
[j58]Erich Novak, Ian H. Sloan, Joseph F. Traub, Henryk Wozniakowski: Thomas Daun, Leszek Plaskota, Greg W. Wasilkowski Win the 2011 Best Paper Award. J. Complexity 28(5-6): 519 (2012)
[j57]Congpei An, Xiaojun Chen, Ian H. Sloan, Robert S. Womersley: Regularized Least Squares Approximations on the Sphere Using Spherical Designs. SIAM J. Numerical Analysis 50(3): 1513-1534 (2012)
[j56]Frances Y. Kuo, Christoph Schwab, Ian H. Sloan: Quasi-Monte Carlo Finite Element Methods for a Class of Elliptic Partial Differential Equations with Random Coefficients. SIAM J. Numerical Analysis 50(6): 3351-3374 (2012)- 2011
[j55]Ian H. Sloan: Polynomial approximation on spheres - generalizing de la Vallée-Poussin. Comput. Meth. in Appl. Math. 11(4): 540-552 (2011)
[j54]Xiaoqun Wang, Ian H. Sloan: Quasi-Monte Carlo Methods in Financial Engineering: An Equivalence Principle and Dimension Reduction. Operations Research 59(1): 80-95 (2011)
[j53]Erich Novak, Ian H. Sloan, Joseph F. Traub, Henryk Wozniakowski: Aicke Hinrichs, Simon Foucart, Alain Pajor, Holger Rauhut, Tino Ullrich win the 2010 Best Paper Award. J. Complexity 27(6): 501 (2011)
[j52]C. K. Chan, Xiaojun Chen, Liqun Qi, Colin Rogers, Zhong-ci Shi, Ian H. Sloan: Preface. J. Computational Applied Mathematics 235(13): 3703-3704 (2011)
[j51]I. G. Graham, Frances Y. Kuo, Dirk Nuyens, Robert Scheichl, Ian H. Sloan: Quasi-Monte Carlo methods for elliptic PDEs with random coefficients and applications. J. Comput. Physics 230(10): 3668-3694 (2011)
[j50]M. Ganesh, Quoc Thong Le Gia, Ian H. Sloan: A pseudospectral quadrature method for Navier-Stokes equations on rotating spheres. Math. Comput. 80(275): 1397-1430 (2011)- 2010
[j49]Frances Y. Kuo, Ian H. Sloan, Grzegorz W. Wasilkowski, Benjamin J. Waterhouse: Randomly shifted lattice rules with the optimal rate of convergence for unbounded integrands. J. Complexity 26(2): 135-160 (2010)
[j48]Markus Hegland, Stefan Heinrich, Ian H. Sloan: Guest Editors' Preface. J. Complexity 26(5): 407 (2010)
[j47]Frances Y. Kuo, Ian H. Sloan, Grzegorz W. Wasilkowski, Henryk Wozniakowski: Liberating the dimension. J. Complexity 26(5): 422-454 (2010)
[j46]Michael Griebel, Frances Y. Kuo, Ian H. Sloan: The smoothing effect of the ANOVA decomposition. J. Complexity 26(5): 523-551 (2010)
[j45]Frances Y. Kuo, Ian H. Sloan, Grzegorz W. Wasilkowski, Henryk Wozniakowski: On decompositions of multivariate functions. Math. Comput. 79(270): 953-966 (2010)
[j44]Quoc Thong Le Gia, Ian H. Sloan, Holger Wendland: Multiscale Analysis in Sobolev Spaces on the Sphere. SIAM J. Numerical Analysis 48(6): 2065-2090 (2010)
[j43]Congpei An, Xiaojun Chen, Ian H. Sloan, Robert S. Womersley: Well Conditioned Spherical Designs for Integration and Interpolation on the Two-Sphere. SIAM J. Numerical Analysis 48(6): 2135-2157 (2010)
2000 – 2009
- 2009
[j42]Ian H. Sloan, Robert S. Womersley: A variational characterisation of spherical designs. Journal of Approximation Theory 159(2): 308-318 (2009)
[j41]Erich Novak, Ian H. Sloan, Joseph F. Traub, Henryk Wozniakowski: Changes to the Editorial Board. J. Complexity 25(6): 510 (2009)
[j40]Quoc Thong Le Gia, Ian H. Sloan, T. Tran: Overlapping additive Schwarz preconditioners for elliptic PDEs on the unit sphere. Math. Comput. 78(265): 79-101 (2009)
[j39]Ian H. Sloan, Holger Wendland: Inf-sup condition for spherical polynomials and radial basis functions on spheres. Math. Comput. 78(267): 1319-1331 (2009)- 2008
[j38]Ian H. Sloan, Alvise Sommariva: Approximation on the sphere using radial basis functions plus polynomials. Adv. Comput. Math. 29(2): 147-177 (2008)
[j37]Frances Y. Kuo, Ian H. Sloan, Henryk Wozniakowski: Lattice rule algorithms for multivariate approximation in the average case setting. J. Complexity 24(2): 283-323 (2008)- 2007
[j36]Kerstin Hesse, Frances Y. Kuo, Ian H. Sloan: A component-by-component approach to efficient numerical integration over products of spheres. J. Complexity 23(1): 25-51 (2007)
[j35]Kerstin Hesse, H. N. Mhaskar, Ian H. Sloan: Quadrature in Besov spaces on the Euclidean sphere. J. Complexity 23(4-6): 528-552 (2007)
[j34]Josef Dick, Peter Kritzer, Frances Y. Kuo, Ian H. Sloan: Lattice-Nyström method for Fredholm integral equations of the second kind with convolution type kernels. J. Complexity 23(4-6): 752-772 (2007)
[j33]Frances Y. Kuo, Ian H. Sloan, Henryk Wozniakowski: Periodization strategy may fail in high dimensions. Numerical Algorithms 46(4): 369-391 (2007)
[e1]Stephan Dahlke, Klaus Ritter, Ian H. Sloan, Joseph F. Traub (Eds.): Algorithms and Complexity for Continuous Problems, 24.09. - 29.09.2006. Dagstuhl Seminar Proceedings 06391, Internationales Begegnungs- und Forschungszentrum fuer Informatik (IBFI), Schloss Dagstuhl, Germany 2007- 2006
[j32]Kerstin Hesse, Ian H. Sloan: Cubature over the sphere S2 in Sobolev spaces of arbitrary order. Journal of Approximation Theory 141(2): 118-133 (2006)
[j31]Benjamin J. Waterhouse, Frances Y. Kuo, Ian H. Sloan: Randomly shifted lattice rules on the unit cube for unbounded integrands in high dimensions. J. Complexity 22(1): 71-101 (2006)
[j30]
[j29]Xiaoqun Wang, Ian H. Sloan: Efficient Weighted Lattice Rules with Applications to Finance. SIAM J. Scientific Computing 28(2): 728-750 (2006)
[c1]Stephan Dahlke, Klaus Ritter, Ian H. Sloan, Joseph F. Traub: 06391 Abstracts Collection -- Algorithms and Complexity for Continuous Problems. Algorithms and Complexity for Continuous Problems 2006- 2005
[j28]Rolf Dieter Grigorieff, Ian H. Sloan: Discrete orthogonal projections on multiple knot periodic splines. Journal of Approximation Theory 137(2): 201-225 (2005)
[j27]Frances Y. Kuo, Ian H. Sloan: Quasi-Monte Carlo methods can be efficient for integration over products of spheres. J. Complexity 21(2): 196-210 (2005)
[j26]Kerstin Hesse, Ian H. Sloan: Optimal lower bounds for cubature error on the sphere S2. J. Complexity 21(6): 790-803 (2005)
[j25]Josef Dick, Frances Y. Kuo, Friedrich Pillichshammer, Ian H. Sloan: Construction algorithms for polynomial lattice rules for multivariate integration. Math. Comput. 74(252): 1895-1921 (2005)
[j24]Fred J. Hickernell, Ian H. Sloan, Grzegorz W. Wasilkowski: A Piecewise Constant Algorithm for Weighted L1 Approximation over Bounded or Unbounded Regions in Rs. SIAM J. Numerical Analysis 43(3): 1003-1020 (2005)
[j23]Xiaoqun Wang, Ian H. Sloan: Why Are High-Dimensional Finance Problems Often of Low Effective Dimension?. SIAM J. Scientific Computing 27(1): 159-183 (2005)- 2004
[j22]Ian H. Sloan, Robert S. Womersley: Extremal Systems of Points and Numerical Integration on the Sphere. Adv. Comput. Math. 21(1-2): 107-125 (2004)
[j21]Erich Novak, Ian H. Sloan, Henryk Wozniakowski: Tractability of Approximation for Weighted Korobov Spaces on Classical and Quantum Computers. Foundations of Computational Mathematics 4(2): 121-156 (2004)
[j20]Ian H. Sloan, Xiaoqun Wang, Henryk Wozniakowski: Finite-order weights imply tractability of multivariate integration. J. Complexity 20(1): 46-74 (2004)
[j19]Josef Dick, Ian H. Sloan, Xiaoqun Wang, Henryk Wozniakowski: Liberating the weights. J. Complexity 20(5): 593-623 (2004)
[j18]Fred J. Hickernell, Ian H. Sloan, Grzegorz W. Wasilkowski: On tractability of weighted integration over bounded and unbounded regions in Reals. Math. Comput. 73(248): 1885-1901 (2004)
[j17]Fred J. Hickernell, Ian H. Sloan, Grzegorz W. Wasilkowski: On strong tractability of weighted multivariate integration. Math. Comput. 73(248): 1903-1911 (2004)
[j16]Xiaoqun Wang, Ian H. Sloan, Josef Dick: On Korobov Lattice Rules in Weighted Spaces. SIAM J. Numerical Analysis 42(4): 1760-1779 (2004)- 2002
[j15]Ian H. Sloan, Henryk Wozniakowski: Tractability of Integration in Non-periodic and Periodic Weighted Tensor Product Hilbert Spaces. J. Complexity 18(2): 479-499 (2002)
[j14]Ian H. Sloan, Andrew V. Reztsov: Component-by-component construction of good lattice rules. Math. Comput. 71(237): 263-273 (2002)
[j13]Ian H. Sloan, Frances Y. Kuo, Stephen Joe: On the step-by-step construction of quasi-Monte Carlo integration rules that achieve strong tractability error bounds in weighted Sobolev spaces. Math. Comput. 71(240): 1609-1640 (2002)
[j12]Ian H. Sloan, Frances Y. Kuo, Stephen Joe: Constructing Randomly Shifted Lattice Rules in Weighted Sobolev Spaces. SIAM J. Numerical Analysis 40(5): 1650-1665 (2002)- 2001
[j11]Robert S. Womersley, Ian H. Sloan: How good can polynomial interpolation on the sphere be? Adv. Comput. Math. 14(3): 195-226 (2001)
[j10]Ian H. Sloan, Arthur G. Werschultz: ANNOUNCEMENT: 2001 Best Paper Award Committee. J. Complexity 17(3): 495- (2001)
[j9]Ian H. Sloan, Henryk Wozniakowski: Tractability of Multivariate Integration for Weighted Korobov Classes. J. Complexity 17(4): 697-721 (2001)- 2000
[j8]Dongwoo Sheen, Ian H. Sloan, Vidar Thomée: A parallel method for time-discretization of parabolic problems based on contour integral representation and quadrature. Math. Comput. 69(229): 177-195 (2000)
1990 – 1999
- 1998
[j7]Ian H. Sloan, Henryk Wozniakowski: When Are Quasi-Monte Carlo Algorithms Efficient for High Dimensional Integrals? J. Complexity 14(1): 1-33 (1998)- 1997
[j6]Y. Jeon, Ian H. Sloan, E. P. Stephan, J. Elschner: Discrete qualocation methods for logarithmic-kernel integral equations on a piecewise smooth boundary. Adv. Comput. Math. 7(4): 547-571 (1997)
[j5]Erich Novak, Ian H. Sloan, Henryk Wozniakowski: Tractability of Tensor Product Linear Operators. J. Complexity 13(4): 387-418 (1997)
[j4]Ian H. Sloan, Henryk Wozniakowski: An intractability result for multiple integration. Math. Comput. 66(219): 1119-1124 (1997)- 1996
[j3]Ch. Lubich, Ian H. Sloan, Vidar Thomée: Nonsmooth data error estimates for approximations of an evolution equation with a positive-type memory term. Math. Comput. 65(213): 1-17 (1996)
[j2]Ronald Cools, Ian H. Sloan: Minimal cubature formulae of trigonometric degree. Math. Comput. 65(216): 1583-1600 (1996)- 1993
[j1]Stephen Joe, Ian H. Sloan: Implementation of a lattice method for numerical multiple integration. ACM Trans. Math. Softw. 19(4): 523-545 (1993)
Coauthor Index
data released under the ODC-BY 1.0 license. See also our legal information page
last updated on 2013-10-02 11:18 CEST by the dblp team



