Please note: This is a beta version of the new dblp website.
You can find the classic dblp view of this page here.
You can find the classic dblp view of this page here.
Thomas Seidl
Author information
- RWTH Aachen
Other persons with the same name
- Thomas Seidl 0002 — Fraunhofer Institute for Factory Operation and Automation (IFF)
2010 – today
- 2013
[j28]Thomas Seidl: Datenmanagement und -exploration an der RWTH Aachen. Datenbank-Spektrum 13(1): 55-58 (2013)
[j27]Markus Harmsen, Benedikt Fischer, Hauke Schramm, Thomas Seidl, Thomas Martin Deserno: Support Vector Machine Classification Based on Correlation Prototypes Applied to Bone Age Assessment. IEEE J. Biomedical and Health Informatics 17(1): 190-197 (2013)
[c150]Thomas Seidl, Sergej Fries, Brigitte Boden: MR-DSJ: Distance-Based Self-Join for Large-Scale Vector Data Analysis with MapReduce. BTW 2013: 37-56
[c149]Christian Beecks, Merih Seran Uysal, Philip Driessen, Thomas Seidl: Content-based exploration of multimedia databases. CBMI 2013: 59-64
[c148]Marwan Hassani, Yunsu Kim, Thomas Seidl: Subspace MOA: Subspace Stream Clustering Evaluation Using the MOA Framework. DASFAA (2) 2013: 446-449
[c147]Ayman Tarakji, Marwan Hassani, Stefan Lankes, Thomas Seidl: Using a Multitasking GPU Environment for Content-Based Similarity Measures of Big Data. ICCSA (5) 2013: 181-196
[c146]Christian Beecks, Steffen Kirchhoff, Thomas Seidl: Signature matching distance for content-based image retrieval. ICMR 2013: 41-48
[c145]Stephan Günnemann, Brigitte Boden, Ines Färber, Thomas Seidl: Efficient Mining of Combined Subspace and Subgraph Clusters in Graphs with Feature Vectors. PAKDD (1) 2013: 261-275
[c144]Marwan Hassani, Yunsu Kim, Seungjin Choi, Thomas Seidl: Effective Evaluation Measures for Subspace Clustering of Data Streams. PAKDD Workshops 2013: 342-353
[c143]Brigitte Boden, Stephan Günnemann, Holger Hoffmann, Thomas Seidl: RMiCS: a robust approach for mining coherent subgraphs in edge-labeled multi-layer graphs. SSDBM 2013: 23
[c142]Hardy Kremer, Stephan Günnemann, Simon Wollwage, Thomas Seidl: Nesting the earth mover's distance for effective cluster tracing. SSDBM 2013: 34- 2012
[j26]Stephan Günnemann, Hardy Kremer, Charlotte Laufkötter, Thomas Seidl: Tracing Evolving Subspace Clusters in Temporal Climate Data. Data Min. Knowl. Discov. 24(2): 387-410 (2012)
[j25]Stephan Günnemann, Brigitte Boden, Thomas Seidl: Finding density-based subspace clusters in graphs with feature vectors. Data Min. Knowl. Discov. 25(2): 243-269 (2012)
[j24]Philipp Kranen, Ira Assent, Thomas Seidl: An Index-Inspired Algorithm for Anytime Classification on Evolving Data Streams. Datenbank-Spektrum 12(1): 43-50 (2012)
[j23]Anca Maria Ivanescu, Marc Wichterich, Christian Beecks, Thomas Seidl: The ClasSi coefficient for the evaluation of ranking quality in the presence of class similarities. Frontiers of Computer Science 6(5): 568-580 (2012)
[c141]Brigitte Boden, Stephan Günnemann, Thomas Seidl: Tracing clusters in evolving graphs with node attributes. CIKM 2012: 2331-2334
[c140]Philipp Kranen, Stephan Wels, Tim Rohlfs, Sebastian Raubach, Thomas Seidl: A tool for automated evaluation of algorithms. CIKM 2012: 2692-2694
[c139]Ira Assent, Philipp Kranen, Corinna Baldauf, Thomas Seidl: AnyOut: Anytime Outlier Detection on Streaming Data. DASFAA (1) 2012: 228-242
[c138]Philipp Kranen, Hardy Kremer, Timm Jansen, Thomas Seidl, Albert Bifet, Geoff Holmes, Bernhard Pfahringer, Jesse Read: Stream Data Mining Using the MOA Framework. DASFAA (2) 2012: 309-313
[c137]Anca Maria Ivanescu, Philipp Kranen, Manfred Smieschek, Philip Driessen, Thomas Seidl: PA-Miner: Process Analysis Using Retrieval, Modeling, and Prediction. DASFAA (2) 2012: 319-322
[c136]Emmanuel Müller, Stephan Günnemann, Ines Färber, Thomas Seidl: Discovering Multiple Clustering Solutions: Grouping Objects in Different Views of the Data. ICDE 2012: 1207-1210
[c135]Hardy Kremer, Stephan Günnemann, Arne Held, Thomas Seidl: Effective and Robust Mining of Temporal Subspace Clusters. ICDM 2012: 369-378
[c134]Anca Maria Ivanescu, Thivaharan Albin, Dirk Abel, Thomas Seidl: Employing the Principal Hessian Direction for Building Hinging Hyperplane Models. ICDM Workshops 2012: 481-485
[c133]Stephan Günnemann, Hardy Kremer, Richard Musiol, Roman Haag, Thomas Seidl: A Subspace Clustering Extension for the KNIME Data Mining Framework. ICDM Workshops 2012: 886-889
[c132]Andrada Tatu, Fabian Maass, Ines Färber, Enrico Bertini, Tobias Schreck, Thomas Seidl, Daniel A. Keim: Subspace search and visualization to make sense of alternative clusterings in high-dimensional data. IEEE VAST 2012: 63-72
[c131]Stephan Günnemann, Ines Färber, Thomas Seidl: Multi-view clustering using mixture models in subspace projections. KDD 2012: 132-140
[c130]Stephan Günnemann, Ines Färber, Kittipat Virochsiri, Thomas Seidl: Subspace correlation clustering: finding locally correlated dimensions in subspace projections of the data. KDD 2012: 352-360
[c129]Brigitte Boden, Stephan Günnemann, Holger Hoffmann, Thomas Seidl: Mining coherent subgraphs in multi-layer graphs with edge labels. KDD 2012: 1258-1266
[c128]Christian Beecks, Thomas Seidl: On Stability of Adaptive Similarity Measures for Content-Based Image Retrieval. MMM 2012: 346-357
[c127]Roland Assam, Marwan Hassani, Thomas Seidl: Differential Private Trajectory Obfuscation. MobiQuitous 2012: 139-151
[c126]Marwan Hassani, Thomas Seidl: Resource-Aware Distributed Clustering of Drifting Sensor Data Streams. NDT (1) 2012: 592-607
[c125]Hardy Kremer, Stephan Günnemann, Arne Held, Thomas Seidl: Mining of Temporal Coherent Subspace Clusters in Multivariate Time Series Databases. PAKDD (1) 2012: 444-455
[c124]Thomas Seidl, Brigitte Boden, Sergej Fries: CC-MR - Finding Connected Components in Huge Graphs with MapReduce. ECML/PKDD (1) 2012: 458-473
[c123]Stephan Günnemann, Brigitte Boden, Thomas Seidl: Substructure Clustering: A Novel Mining Paradigm for Arbitrary Data Types. SSDBM 2012: 280-297
[c122]Philipp Kranen, Marwan Hassani, Thomas Seidl: BT* - An Advanced Algorithm for Anytime Classification. SSDBM 2012: 298-315
[c121]Anca Maria Ivanescu, Philipp Kranen, Thomas Seidl: Hinging Hyperplane Models for Multiple Predicted Variables. SSDBM 2012: 431-448
[c120]Marwan Hassani, Pascal Spaus, Mohamed Medhat Gaber, Thomas Seidl: Density-Based Projected Clustering of Data Streams. SUM 2012: 311-324
[i1]Daniel A. Keim, Fabrice Rossi, Thomas Seidl, Michel Verleysen, Stefan Wrobel: Information Visualization, Visual Data Mining and Machine Learning (Dagstuhl Seminar 12081). Dagstuhl Reports 2(2): 58-83 (2012)- 2011
[j22]Christoph Busch, Ulrike Korte, Sebastian Abt, Christian Böhm, Ines Färber, Sergej Fries, Johannes Merkle, Claudia Nickel, Alexander Nouak, Alexander Opel, Annahita Oswald, Thomas Seidl, Bianca Wackersreuther, Peter Wackersreuther, Xuebing Zhou: Biometric Template Protection - Ein Bericht über das Projekt BioKeyS. Datenschutz und Datensicherheit 35(3): 183-191 (2011)
[j21]Nikos Mamoulis, Thomas Seidl: Special section on spatial and temporal databases. GeoInformatica 15(4): 663-664 (2011)
[j20]Philipp Kranen, Ira Assent, Corinna Baldauf, Thomas Seidl: The ClusTree: indexing micro-clusters for anytime stream mining. Knowl. Inf. Syst. 29(2): 249-272 (2011)
[c119]Christian Böhm, Ines Färber, Sergej Fries, Ulrike Korte, Johannes Merkle, Annahita Oswald, Thomas Seidl, Bianca Wackersreuther, Peter Wackersreuther: Efficient Database Techniques for Identification with Fuzzy Vault Templates. BIOSIG 2011: 115-126
[c118]Marc Wichterich, Anca Maria Ivanescu, Thomas Seidl: Feature-Based Graph Similarity with Co-Occurrence Histograms and the Earth Mover's Distance. BTW 2011: 135-146
[c117]Emmanuel Müller, Ira Assent, Stephan Günnemann, Patrick Gerwert, Matthias Hannen, Timm Jansen, Thomas Seidl: A Framework for Evaluation and Exploration of Clustering Algorithms in Subspaces of High Dimensional Databases. BTW 2011: 347-366
[c116]Christian Böhm, Ines Färber, Sergej Fries, Ulrike Korte, Johannes Merkle, Annahita Oswald, Thomas Seidl, Bianca Wackersreuther, Peter Wackersreuther: Filtertechniken für geschützte biometrische Datenbanken. BTW 2011: 379-389
[c115]Thivaharan Albin, Peter Drews, Frank J. Hesseler, Anca Maria Ivanescu, Thomas Seidl, Dirk Abel: A hybrid control approach for low temperature combustion engine control. CDC-ECE 2011: 6846-6851
[c114]Emmanuel Müller, Ira Assent, Stephan Günnemann, Thomas Seidl: Scalable density-based subspace clustering. CIKM 2011: 1077-1086
[c113]Stephan Günnemann, Ines Färber, Emmanuel Müller, Ira Assent, Thomas Seidl: External evaluation measures for subspace clustering. CIKM 2011: 1363-1372
[c112]Martin Krulis, Jakub Lokoc, Christian Beecks, Tomás Skopal, Thomas Seidl: Processing the signature quadratic form distance on many-core GPU architectures. CIKM 2011: 2373-2376
[c111]Stephan Günnemann, Hardy Kremer, Dominik Lenhard, Thomas Seidl: Subspace clustering for indexing high dimensional data: a main memory index based on local reductions and individual multi-representations. EDBT 2011: 237-248
[c110]Roland Assam, Thomas Seidl: Preserving privacy of moving objects via temporal clustering of spatio-temporal data streams. SPRINGL 2011: 9-16
[c109]Christian Beecks, Anca Maria Ivanescu, Steffen Kirchhoff, Thomas Seidl: Modeling image similarity by Gaussian mixture models and the Signature Quadratic Form Distance. ICCV 2011: 1754-1761
[c108]Emmanuel Müller, Matthias Schiffer, Thomas Seidl: Statistical selection of relevant subspace projections for outlier ranking. ICDE 2011: 434-445
[c107]Stephan Günnemann, Emmanuel Müller, Sebastian Raubach, Thomas Seidl: Flexible Fault Tolerant Subspace Clustering for Data with Missing Values. ICDM 2011: 231-240
[c106]Christian Beecks, Thomas Seidl: Analyzing the inner workings of the Signature Quadratic Form Distance. ICME 2011: 1-6
[c105]Hardy Kremer, Philipp Kranen, Timm Jansen, Thomas Seidl, Albert Bifet, Geoff Holmes, Bernhard Pfahringer: An effective evaluation measure for clustering on evolving data streams. KDD 2011: 868-876
[c104]Marwan Hassani, Thomas Seidl: Towards a Mobile Health Context Prediction: Sequential Pattern Mining in Multiple Streams. Mobile Data Management (2) 2011: 55-57
[c103]Christian Beecks, Jakub Lokoc, Thomas Seidl, Tomás Skopal: Indexing the signature quadratic form distance for efficient content-based multimedia retrieval. ICMR 2011: 24
[c102]Christian Beecks, Anca Maria Ivanescu, Steffen Kirchhoff, Thomas Seidl: Modeling multimedia contents through probabilistic feature signatures. ACM Multimedia 2011: 1433-1436
[c101]Christian Beecks, Ira Assent, Thomas Seidl: Content-Based Multimedia Retrieval in the Presence of Unknown User Preferences. MMM (1) 2011: 140-150
[c100]Christian Beecks, Merih Seran Uysal, Thomas Seidl: L2-Signature Quadratic Form Distance for Efficient Query Processing in Very Large Multimedia Databases. MMM (1) 2011: 381-391
[c99]Anca Maria Ivanescu, Marc Wichterich, Thomas Seidl: ClasSi: Measuring Ranking Quality in the Presence of Object Classes with Similarity Information. PAKDD Workshops 2011: 185-196
[c98]Stephan Günnemann, Hardy Kremer, Charlotte Laufkötter, Thomas Seidl: Tracing Evolving Clusters by Subspace and Value Similarity. PAKDD (2) 2011: 444-456
[c97]Stephan Günnemann, Brigitte Boden, Thomas Seidl: DB-CSC: A Density-Based Approach for Subspace Clustering in Graphs with Feature Vectors. ECML/PKDD (1) 2011: 565-580
[c96]Albert Bifet, Geoff Holmes, Bernhard Pfahringer, Jesse Read, Philipp Kranen, Hardy Kremer, Timm Jansen, Thomas Seidl: MOA: A Real-Time Analytics Open Source Framework. ECML/PKDD (3) 2011: 617-620
[c95]Christian Beecks, Anca Maria Ivanescu, Thomas Seidl, Diana Martin, Philipp Pischke, Reinhold Kneer: Applying similarity search for the investigation of the fuel injection process. SISAP 2011: 117-118
[c94]Jakub Lokoc, Christian Beecks, Thomas Seidl, Tomás Skopal: Parameterized earth mover's distance for efficient metric space indexing. SISAP 2011: 121-122
[c93]Hardy Kremer, Stephan Günnemann, Anca Maria Ivanescu, Ira Assent, Thomas Seidl: Efficient Processing of Multiple DTW Queries in Time Series Databases. SSDBM 2011: 150-167
[c92]Philipp Kranen, Felix Reidl, Fernando Sanchez Villaamil, Thomas Seidl: Hierarchical Clustering for Real-Time Stream Data with Noise. SSDBM 2011: 405-413
[p3]
[e4]Emmanuel Müller, Stephan Günnemann, Ira Assent, Thomas Seidl (Eds.): Proceedings of the 2nd MultiClust Workshop: Discovering, Summarizing and Using Multiple Clusterings, Athens, Greece, September 5, 2011, in conjunction with ECML/PKDD 2011. CEUR Workshop Proceedings 772, CEUR-WS.org 2011- 2010
[j19]Albert Bifet, Geoff Holmes, Bernhard Pfahringer, Philipp Kranen, Hardy Kremer, Timm Jansen, Thomas Seidl: MOA: Massive Online Analysis, a Framework for Stream Classification and Clustering. Journal of Machine Learning Research - Proceedings Track 11: 44-50 (2010)
[j18]Stephan Günnemann, Ines Färber, Hardy Kremer, Thomas Seidl: CoDA: Interactive Cluster Based Concept Discovery. PVLDB 3(2): 1633-1636 (2010)
[c91]Emmanuel Müller, Matthias Schiffer, Thomas Seidl: Adaptive outlierness for subspace outlier ranking. CIKM 2010: 1629-1632
[c90]Christian Beecks, Merih Seran Uysal, Thomas Seidl: Signature Quadratic Form Distance. CIVR 2010: 438-445
[c89]Ira Assent, Hardy Kremer, Thomas Seidl: Speeding Up Complex Video Copy Detection Queries. DASFAA (1) 2010: 307-321
[c88]Emmanuel Müller, Philipp Kranen, Michael Nett, Felix Reidl, Thomas Seidl: Air-Indexing on Error Prone Communication Channels. DASFAA (1) 2010: 505-519
[c87]Ira Assent, Hardy Kremer, Stephan Günnemann, Thomas Seidl: Pattern detector: fast detection of suspicious stream patterns for immediate reaction. EDBT 2010: 709-712
[c86]Christian Beecks, Merih Seran Uysal, Thomas Seidl: Efficient k-nearest neighbor queries with the Signature Quadratic Form Distance. ICDE Workshops 2010: 10-15
[c85]Hardy Kremer, Stephan Günnemann, Thomas Seidl: Detecting Climate Change in Multivariate Time Series Data by Novel Clustering and Cluster Tracing Techniques. ICDM Workshops 2010: 96-97
[c84]Stephan Günnemann, Ines Färber, Brigitte Boden, Thomas Seidl: Subspace Clustering Meets Dense Subgraph Mining: A Synthesis of Two Paradigms. ICDM 2010: 845-850
[c83]Emmanuel Müller, Stephan Günnemann, Ines Färber, Thomas Seidl: Discovering Multiple Clustering Solutions: Grouping Objects in Different Views of the Data. ICDM 2010: 1220
[c82]Stephan Günnemann, Hardy Kremer, Ines Färber, Thomas Seidl: MCExplorer: Interactive Exploration of Multiple (Subspace) Clustering Solutions. ICDM Workshops 2010: 1387-1390
[c81]Philipp Kranen, Hardy Kremer, Timm Jansen, Thomas Seidl, Albert Bifet, Geoff Holmes, Bernhard Pfahringer: Clustering Performance on Evolving Data Streams: Assessing Algorithms and Evaluation Measures within MOA. ICDM Workshops 2010: 1400-1403
[c80]Christian Beecks, Thilo Stadelmann, Bernd Freisleben, Thomas Seidl: Visual speaker model exploration. ICME 2010: 727-728
[c79]Christian Beecks, Merih Seran Uysal, Thomas Seidl: A comparative study of similarity measures for content-based multimedia retrieval. ICME 2010: 1552-1557
[c78]Christian Beecks, Sascha Wiedenfeld, Thomas Seidl: Improving the Efficiency of Content-Based Multimedia Exploration. ICPR 2010: 3163-3166
[c77]Christian Beecks, Philip Driessen, Thomas Seidl: Index support for content-based multimedia exploration. ACM Multimedia 2010: 999-1002
[c76]Stephan Günnemann, Thomas Seidl: Subgraph Mining on Directed and Weighted Graphs. PAKDD (2) 2010: 133-146
[c75]Philipp Kranen, Ralph Krieger, Stefan Denker, Thomas Seidl: Bulk Loading Hierarchical Mixture Models for Efficient Stream Classification. PAKDD (2) 2010: 325-334
[c74]Emmanuel Müller, Matthias Schiffer, Patrick Gerwert, Matthias Hannen, Timm Jansen, Thomas Seidl: SOREX: Subspace Outlier Ranking Exploration Toolkit. ECML/PKDD (3) 2010: 607-610
[c73]Stephan Günnemann, Hardy Kremer, Thomas Seidl: Subspace Clustering for Uncertain Data. SDM 2010: 385-396
[c72]Christian Beecks, Merih Seran Uysal, Thomas Seidl: Similarity matrix compression for efficient signature quadratic form distance computation. SISAP 2010: 109-114
[c71]Philipp Kranen, Stephan Günnemann, Sergej Fries, Thomas Seidl: MC-Tree: Improving Bayesian Anytime Classification. SSDBM 2010: 252-269
2000 – 2009
- 2009
[j17]Philipp Kranen, Thomas Seidl: Harnessing the strengths of anytime algorithms for constant data streams. Data Min. Knowl. Discov. 19(2): 245-260 (2009)
[j16]Matthias Schiffer, Emmanuel Müller, Thomas Seidl: SubRank: Ranking Local Outliers in Projections of High-Dimensional Spaces. Datenbank-Spektrum 29: 53-55 (2009)
[j15]Ira Assent, Marc Wichterich, Ralph Krieger, Hardy Kremer, Thomas Seidl: Anticipatory DTW for Efficient Similarity Search in Time Series Databases. PVLDB 2(1): 826-837 (2009)
[j14]Emmanuel Müller, Stephan Günnemann, Ira Assent, Thomas Seidl: Evaluating Clustering in Subspace Projections of High Dimensional Data. PVLDB 2(1): 1270-1281 (2009)
[c70]Marc Wichterich, Christian Beecks, Martin Sundermeyer, Thomas Seidl: Relevance Feedback for the Earth Mover's Distance. Adaptive Multimedia Retrieval 2009: 72-86
[c69]Ira Assent, Stephan Günnemann, Hardy Kremer, Thomas Seidl: High-Dimensional Indexing for Multimedia Features. BTW 2009: 187-206
[c68]Christian Beecks, Marc Wichterich, Thomas Seidl: Metrische Anpassung der Earth Mover's Distanz zur Ähnlichkeitssuche in Multimedia-Datenbanken. BTW 2009: 207-216
[c67]Stephan Günnemann, Emmanuel Müller, Ines Färber, Thomas Seidl: Detection of orthogonal concepts in subspaces of high dimensional data. CIKM 2009: 1317-1326
[c66]Marc Wichterich, Christian Beecks, Martin Sundermeyer, Thomas Seidl: Exploring multimedia databases via optimization-based relevance feedback and the earth mover's distance. CIKM 2009: 1621-1624
[c65]Babak Ahmadi, Marios Hadjieleftheriou, Thomas Seidl, Divesh Srivastava, Suresh Venkatasubramanian: Type-based categorization of relational attributes. EDBT 2009: 84-95
[c64]Thomas Seidl, Ira Assent, Philipp Kranen, Ralph Krieger, Jennifer Herrmann: Indexing density models for incremental learning and anytime classification on data streams. EDBT 2009: 311-322
[c63]Philipp Kranen, Ira Assent, Corinna Baldauf, Thomas Seidl: Self-Adaptive Anytime Stream Clustering. ICDM 2009: 249-258
[c62]Emmanuel Müller, Ira Assent, Stephan Günnemann, Ralph Krieger, Thomas Seidl: Relevant Subspace Clustering: Mining the Most Interesting Non-redundant Concepts in High Dimensional Data. ICDM 2009: 377-386
[c61]Marwan Hassani, Emmanuel Müller, Thomas Seidl: EDISKCO: energy efficient distributed in-sensor-network k-center clustering with outliers. KDD Workshop on Knowledge Discovery from Sensor Data 2009: 39-48
[c60]Christian Beecks, Merih Seran Uysal, Thomas Seidl: Signature quadratic form distances for content-based similarity. ACM Multimedia 2009: 697-700
[c59]Philipp Kranen, Thomas Seidl: Harnessing the Strengths of Anytime Algorithms for Constant Data Streams. ECML/PKDD (1) 2009: 31
[c58]Emmanuel Müller, Ira Assent, Ralph Krieger, Stephan Günnemann, Thomas Seidl: DensEst: Density Estimation for Data Mining in High Dimensional Spaces. SDM 2009: 173-184
[c57]Emmanuel Müller, Ira Assent, Thomas Seidl: HSM: Heterogeneous Subspace Mining in High Dimensional Data. SSDBM 2009: 497-516
[c56]Philipp Kranen, Thomas Seidl: Using Index Structures for Anytime Stream Mining. VLDB PhD Workshop 2009
[e3]Nikos Mamoulis, Thomas Seidl, Torben Bach Pedersen, Kristian Torp, Ira Assent (Eds.): Advances in Spatial and Temporal Databases, 11th International Symposium, SSTD 2009, Aalborg, Denmark, July 8-10, 2009, Proceedings. Lecture Notes in Computer Science 5644, Springer 2009, ISBN 978-3-642-02981-3
[r1]- 2008
[j13]David Ruau, Corinna Kolárik, Heinz-Theodor Mevissen, Emmanuel Müller, Ira Assent, Ralph Krieger, Thomas Seidl, Martin Hofmann-Apitius, Martin Zenke: Public microarray repository semantic annotation with ontologies employing text mining and expression profile correlation. BMC Bioinformatics 9(S-10) (2008)
[j12]Thomas Martin Deserno, Mark Oliver Güld, Bartosz Plodowski, Klaus Spitzer, Berthold B. Wein, Henning Schubert, Hermann Ney, Thomas Seidl: Extended Query Refinement for Medical Image Retrieval. J. Digital Imaging 21(3): 280-289 (2008)
[j11]Ira Assent, Ralph Krieger, Boris Glavic, Thomas Seidl: Clustering multidimensional sequences in spatial and temporal databases. Knowl. Inf. Syst. 16(1): 29-51 (2008)
[c55]Ira Assent, Ralph Krieger, Emmanuel Müller, Thomas Seidl: EDSC: efficient density-based subspace clustering. CIKM 2008: 1093-1102
[c54]Ira Assent, Ralph Krieger, Farzad Afschari, Thomas Seidl: The TS-tree: efficient time series search and retrieval. EDBT 2008: 252-263
[c53]Ira Assent, Marc Wichterich, Tobias Meisen, Thomas Seidl: Efficient similarity search using the Earth Mover's Distance for large multimedia databases. ICDE 2008: 307-316
[c52]Marc Wichterich, Christian Beecks, Thomas Seidl: Ranking multimedia databases via relevance feedback with history and foresight support. ICDE Workshops 2008: 596-599
[c51]Emmanuel Müller, Ira Assent, Uwe Steinhausen, Thomas Seidl: OutRank: ranking outliers in high dimensional data. ICDE Workshops 2008: 600-603
[c50]Ira Assent, Ralph Krieger, Emmanuel Müller, Thomas Seidl: INSCY: Indexing Subspace Clusters with In-Process-Removal of Redundancy. ICDM 2008: 719-724
[c49]Emmanuel Müller, Ira Assent, Ralph Krieger, Timm Jansen, Thomas Seidl: Morpheus: interactive exploration of subspace clustering. KDD 2008: 1089-1092
[c48]Philipp Kranen, David Kensche, Saim Kim, Nadine Zimmermann, Emmanuel Müller, Christoph Quix, Xiang Li, Thomas Gries, Thomas Seidl, Matthias Jarke, Steffen Leonhardt: Mobile Mining and Information Management in HealthNet Scenarios. MDM 2008: 215-216
[c47]Ira Assent, Ralph Krieger, Petra Welter, Jörg Herbers, Thomas Seidl: SubClass: Classification of Multidimensional Noisy Data Using Subspace Clusters. PAKDD 2008: 40-52
[c46]Ira Assent, Emmanuel Müller, Ralph Krieger, Timm Jansen, Thomas Seidl: Pleiades: Subspace Clustering and Evaluation. ECML/PKDD (2) 2008: 666-671
[c45]Marc Wichterich, Ira Assent, Philipp Kranen, Thomas Seidl: Efficient EMD-based similarity search in multimedia databases via flexible dimensionality reduction. SIGMOD Conference 2008: 199-212
[c44]Christoph Brochhaus, Thomas Seidl: IndeGSRI: Efficient View-Dependent Ranking in CFD Post- processing Queries with RDBMS. SSDBM 2008: 598-604
[p2]- 2007
[j10]Mohammed J. Zaki, Markus Peters, Ira Assent, Thomas Seidl: Clicks: An effective algorithm for mining subspace clusters in categorical datasets. Data Knowl. Eng. 60(1): 51-70 (2007)
[j9]Ira Assent, Ralph Krieger, Emmanuel Müller, Thomas Seidl: VISA: visual subspace clustering analysis. SIGKDD Explorations 9(2): 5-12 (2007)
[c43]Ira Assent, Ralph Krieger, Emmanuel Müller, Thomas Seidl: Subspace outlier mining in large multimedia databases. Parallel Universes and Local Patterns 2007
[c42]Ira Assent, Ralph Krieger, Thomas Seidl: AttentionAttractor: efficient video stream similarity query processing in real time. ICDE 2007: 1509-1510
[c41]Ira Assent, Ralph Krieger, Emmanuel Müller, Thomas Seidl: DUSC: Dimensionality Unbiased Subspace Clustering. ICDM 2007: 409-414
[c40]Christoph Brochhaus, Thomas Seidl: Efficient Index Support for View-Dependent Queries on CFD Data. SSTD 2007: 57-74
[c39]Christoph Brochhaus, Thomas Seidl: IndeGS: Index Supported Graphics Data Server for CFD Data Postprocessing. VLDB 2007: 1354-1357
[e2]Alfons Kemper, Harald Schöning, Thomas Rose, Matthias Jarke, Thomas Seidl, Christoph Quix, Christoph Brochhaus (Eds.): Datenbanksysteme in Business, Technologie und Web (BTW 2007), 12. Fachtagung des GI-Fachbereichs "Datenbanken und Informationssysteme" (DBIS), Proceedings, 7.-9. März 2007, Aachen, Germany. LNI 103, GI 2007, ISBN 978-3-88579-197-3
[e1]Matthias Jarke, Thomas Seidl, Christoph Quix, David Kensche, Stefan Conrad, Erhard Rahm, Ralf Klamma, Harald Kosch, Michael Granitzer, Sven Apel, Marko Rosenmüller, Gunter Saake, Olaf Spinczyk (Eds.): Datenbanksysteme in Business, Technologie und Web (BTW 2007), Workshop Proceedings, 5.-6. März 2007, Aachen, Germany. Verlagshaus Mainz, Aachen 2007, ISBN 3-86130-929-7- 2006
[j8]Ira Assent, Marc Wichterich, Thomas Seidl: Adaptable Distance Functions for Similarity-based Multimedia Retrieval. Datenbank-Spektrum 19: 23-31 (2006)
[c38]Ira Assent, Thomas Seidl: Efficient multi-step query processing for EMD-based similarity. Content-Based Retrieval 2006
[c37]Christoph Brochhaus, Marc Wichterich, Thomas Seidl: Approximation Techniques to Enable Dimensionality Reduction for Voronoi-Based Nearest Neighbor Search. EDBT 2006: 204-221
[c36]Ira Assent, Andrea Wenning, Thomas Seidl: Approximation Techniques for Indexing the Earth Mover's Distance in Multimedia Databases. ICDE 2006: 11
[c35]Ira Assent, Ralph Krieger, Boris Glavic, Thomas Seidl: Spatial Multidimensional Sequence Clustering. ICDM Workshops 2006: 343-348- 2005
[j7]Christoph Brochhaus, Jost Enderle, Achim Schlosser, Thomas Seidl, Knut Stolze: Efficient interval management using object-relational database servers. Inform., Forsch. Entwickl. 20(3): 121-137 (2005)
[c34]Christoph Brochhaus, Jost Enderle, Achim Schlosser, Thomas Seidl, Knut Stolze: Integrating the Relational Interval Tree into IBM's DB2 Universal Database Server. BTW 2005: 67-86
[c33]Mohammed Javeed Zaki, Markus Peters, Ira Assent, Thomas Seidl: CLICKS: an effective algorithm for mining subspace clusters in categorical datasets. KDD 2005: 736-742
[c32]Jost Enderle, Nicole Schneider, Thomas Seidl: Efficiently Processing Queries on Interval-and-Value Tuples in Relational Databases. VLDB 2005: 385-396
[p1]Hans-Peter Kriegel, Martin Pfeifle, Marco Pötke, Thomas Seidl, Jost Enderle: Object-Relational Spatial Indexing. Spatial Databases 2005: 49-80- 2004
[c31]
[c30]M. Tamer Özsu, Jean Carrive, Sébastien Gilles, Izabela Grasland, Roger Mohr, Thomas Seidl: CVDB 2004 Panel: Future Applications and Solutions. CVDB 2004: 67-68
[c29]Hans-Peter Kriegel, Martin Pfeifle, Marco Pötke, Thomas Seidl: A Cost Model for Spatial Intersection Queries on RI-Trees. DASFAA 2004: 331-338
[c28]Karin Kailing, Hans-Peter Kriegel, Stefan Schönauer, Thomas Seidl: Efficient Similarity Search for Hierarchical Data in Large Databases. EDBT 2004: 676-693
[c27]Karin Kailing, Hans-Peter Kriegel, Stefan Schönauer, Thomas Seidl: Efficient Similarity Search in Large Databases of Tree Structured Objects. ICDE 2004: 835
[c26]Jost Enderle, Matthias Hampel, Thomas Seidl: Joining Interval Data in Relational Databases. SIGMOD Conference 2004: 683-694- 2003
[c25]Hans-Peter Kriegel, Martin Pfeifle, Marco Pötke, Matthias Renz, Thomas Seidl: Spatial Data Management for Virtual Product Development. Computer Science in Perspective 2003: 216-230
[c24]Hans-Peter Kriegel, Martin Pfeifle, Marco Pötke, Thomas Seidl: The Paradigm of Relational Indexing: a Survey. BTW 2003: 285-304
[c23]Hans-Peter Kriegel, Martin Pfeifle, Marco Pötke, Thomas Seidl: Spatial Query Processing for High Resolutions. DASFAA 2003: 17-26
[c22]Hans-Peter Kriegel, Peer Kröger, Zahi Mashael, Martin Pfeifle, Marco Pötke, Thomas Seidl: Effective Similarity Search on Voxelized CAD Object. DASFAA 2003: 27-36- 2002
[j6]Christian Böhm, Hans-Peter Kriegel, Thomas Seidl: Combining Approximation Techniques and Vector Quantization for Adaptable Similarity Search. J. Intell. Inf. Syst. 19(2): 207-230 (2002)
[c21]Hans-Peter Kriegel, Martin Pfeifle, Marco Pötke, Thomas Seidl: A Cost Model for Interval Intersection Queries on RI-Trees. SSDBM 2002: 131-141- 2001
[c20]Christian Böhm, Hans-Peter Kriegel, Thomas Seidl: Adaptable Similarity Search Using Vector Quantization. DaWaK 2001: 317-327
[c19]Hans-Peter Kriegel, Andreas Müller, Marco Pötke, Thomas Seidl: DIVE: Database Integration for Virtual Engineering. ICDE Demo Sessions 2001: 15-16
[c18]Hans-Peter Kriegel, Andreas Müller, Marco Pötke, Thomas Seidl: Spatial Data Management for Computer Aided Design. SIGMOD Conference 2001: 614
[c17]Hans-Peter Kriegel, Marco Pötke, Thomas Seidl: Interval Sequences: An Object-Relational Approach to Manage Spatial Data. SSTD 2001: 481-501
[c16]Hans-Peter Kriegel, Marco Pötke, Thomas Seidl: Object-Relational Indexing for General Interval Relationships. SSTD 2001: 522-542- 2000
[j5]Stefan Berchtold, Daniel A. Keim, Hans-Peter Kriegel, Thomas Seidl: Indexing the Solution Space: A New Technique for Nearest Neighbor Search in High-Dimensional Space. IEEE Trans. Knowl. Data Eng. 12(1): 45-57 (2000)
[c15]Hans-Peter Kriegel, Marco Pötke, Thomas Seidl: Managing Intervals Efficiently in Object-Relational Databases. VLDB 2000: 407-418
1990 – 1999
- 1999
[j4]Rolf Backofen, François Bry, Peter Clote, Hans-Peter Kriegel, Thomas Seidl, Klaus U. Schulz: Bioinformatik - Aktuelles Schlagwort. Informatik Spektrum 22(5): 376-378 (1999)
[c14]Thomas Seidl, Hans-Peter Kriegel: Adaptable Similarity Search in Large Image Databases. State-of-the-Art in Content-Based Image and Video Retrieval 1999: 297-317
[c13]Mihael Ankerst, Gabi Kastenmüller, Hans-Peter Kriegel, Thomas Seidl: Nearest Neighbor Classification in 3D Protein Databases. ISMB 1999: 34-43
[c12]Mihael Ankerst, Gabi Kastenmüller, Hans-Peter Kriegel, Thomas Seidl: 3D Shape Histograms for Similarity Search and Classification in Spatial Databases. SSD 1999: 207-226- 1998
[j3]Hans-Peter Kriegel, Thomas Seidl: Approximation-Based Similarity Search for 3-D Surface Segments. GeoInformatica 2(2): 113-147 (1998)
[j2]Thomas Seidl: Adaptable Similarity Search in 3-D Spatial Database Systems (Abstract). Datenbank Rundbrief 21: 96 (1998)
[j1]Mihael Ankerst, Hans-Peter Kriegel, Thomas Seidl: A Multistep Approach for Shape Similarity Search in Image Databases. IEEE Trans. Knowl. Data Eng. 10(6): 996-1004 (1998)
[c11]Thomas Seidl, Gabi Kastenmüller, Hans-Peter Kriegel: Similarity Search in 3D Protein Databases. German Conference on Bioinformatics 1998
[c10]Stefan Berchtold, Bernhard Ertl, Daniel A. Keim, Hans-Peter Kriegel, Thomas Seidl: Fast Nearest Neighbor Search in High-Dimensional Space. ICDE 1998: 209-218
[c9]Thomas Seidl, Hans-Peter Kriegel: Optimal Multi-Step k-Nearest Neighbor Search. SIGMOD Conference 1998: 154-165
[c8]Mihael Ankerst, Bernhard Braunmüller, Hans-Peter Kriegel, Thomas Seidl: Improving Adaptable Similarity Query Processing by Using Approximations. VLDB 1998: 206-217- 1997
[c7]Hans-Peter Kriegel, Thomas Schmidt, Thomas Seidl: 3D Similarity Search by Shape Approximation. SSD 1997: 11-28
[c6]Thomas Seidl, Hans-Peter Kriegel: Efficient User-Adaptable Similarity Search in Large Multimedia Databases. VLDB 1997: 506-515- 1995
[c5]Martin Ester, Hans-Peter Kriegel, Thomas Seidl, Xiaowei Xu: Formbasierte Suche nach komplementären 3D-Oberflächen in einer Protein-Datenbank. BTW 1995: 373-382
[c4]Thomas Seidl, Hans-Peter Kriegel: Solvent Accessible Surface Representation in a Database System for Protein Docking. ISMB 1995: 350-358
[c3]Thomas Seidl, Hans-Peter Kriegel: A 3D Molecular Surface Representation Supporting Neighborhood Queries. SSD 1995: 240-258- 1994
[c2]Daniel A. Keim, Hans-Peter Kriegel, Thomas Seidl: Supporting Data Mining of Large Databases by Visual Feedback Queries. ICDE 1994: 302-313- 1993
[c1]Daniel A. Keim, Hans-Peter Kriegel, Thomas Seidl: Visual Feedback in Querying Large Databases. IEEE Visualization 1993: 158-165
Coauthor Index
data released under the ODC-BY 1.0 license. See also our legal information page
last updated on 2013-10-02 11:07 CEST by the dblp team



