Please note: This is a beta version of the new dblp website.
You can find the classic dblp view of this page here.
You can find the classic dblp view of this page here.
Tobias Scheffer
2010 – today
- 2013
[j14]Christoph Sawade, Steffen Bickel, Timo von Oertzen, Tobias Scheffer, Niels Landwehr: Active evaluation of ranking functions based on graded relevance. Machine Learning 92(1): 41-64 (2013)
[c63]Christoph Sawade, Steffen Bickel, Timo von Oertzen, Tobias Scheffer, Niels Landwehr: Active Evaluation of Ranking Functions Based on Graded Relevance (Extended Abstract). IJCAI 2013- 2012
[c62]
[c61]Paul Prasse, Christoph Sawade, Niels Landwehr, Tobias Scheffer: Learning to Identify Regular Expressions that Describe Email Campaigns. ICML 2012
[c60]Christoph Sawade, Niels Landwehr, Tobias Scheffer: Active Comparison of Prediction Models. NIPS 2012: 1763-1771
[c59]Christoph Sawade, Steffen Bickel, Timo von Oertzen, Tobias Scheffer, Niels Landwehr: Active Evaluation of Ranking Functions Based on Graded Relevance. ECML/PKDD (2) 2012: 676-691
[i2]Paul Prasse, Christoph Sawade, Niels Landwehr, Tobias Scheffer: Learning to Identify Regular Expressions that Describe Email Campaigns. CoRR abs/1206.4637 (2012)
[i1]Peter Haider, Tobias Scheffer: Finding Botnets Using Minimal Graph Clusterings. CoRR abs/1206.4675 (2012)- 2011
[c58]Michael Brückner, Tobias Scheffer: Stackelberg games for adversarial prediction problems. KDD 2011: 547-555
[e5]Lise Getoor, Tobias Scheffer (Eds.): Proceedings of the 28th International Conference on Machine Learning, ICML 2011, Bellevue, Washington, USA, June 28 - July 2, 2011. Omnipress 2011- 2010
[c57]Christoph Sawade, Niels Landwehr, Steffen Bickel, Tobias Scheffer: Active Risk Estimation. ICML 2010: 951-958
[c56]Uwe Dick, Peter Haider, Thomas Vanck, Michael Brückner, Tobias Scheffer: Throttling Poisson Processes. NIPS 2010: 505-513
[c55]Christoph Sawade, Niels Landwehr, Tobias Scheffer: Active Estimation of F-Measures. NIPS 2010: 2083-2091
2000 – 2009
- 2009
[j13]Szymon Jaroszewicz, Tobias Scheffer, Dan A. Simovici: Scalable pattern mining with Bayesian networks as background knowledge. Data Min. Knowl. Discov. 18(1): 56-100 (2009)
[j12]Steffen Bickel, Michael Brückner, Tobias Scheffer: Discriminative Learning Under Covariate Shift. Journal of Machine Learning Research 10: 2137-2155 (2009)
[c54]
[c53]
[c52]Laura Dietz, Valentin Dallmeier, Andreas Zeller, Tobias Scheffer: Localizing Bugs in Program Executions with Graphical Models. NIPS 2009: 468-476
[r1]Tobias Scheffer: Semi-Supervised Learning. Encyclopedia of Data Warehousing and Mining 2009: 1787-1793- 2008
[j11]Szymon Jaroszewicz, Lenka Ivantysynova, Tobias Scheffer: Schema matching on streams with accuracy guarantees. Intell. Data Anal. 12(3): 253-270 (2008)
[c51]Steffen Bickel, Jasmina Bogojeska, Thomas Lengauer, Tobias Scheffer: Multi-task learning for HIV therapy screening. ICML 2008: 56-63
[c50]Uwe Dick, Peter Haider, Tobias Scheffer: Learning from incomplete data with infinite imputations. ICML 2008: 232-239
[c49]Steffen Bickel, Christoph Sawade, Tobias Scheffer: Transfer Learning by Distribution Matching for Targeted Advertising. NIPS 2008: 145-152
[c48]Thoralf Klein, Ulf Brefeld, Tobias Scheffer: Exact and Approximate Inference for Annotating Graphs with Structural SVMs. ECML/PKDD (1) 2008: 611-623- 2007
[c47]Steffen Bickel, Michael Brückner, Tobias Scheffer: Discriminative learning for differing training and test distributions. ICML 2007: 81-88
[c46]Laura Dietz, Steffen Bickel, Tobias Scheffer: Unsupervised prediction of citation influences. ICML 2007: 233-240
[c45]Peter Haider, Ulf Brefeld, Tobias Scheffer: Supervised clustering of streaming data for email batch detection. ICML 2007: 345-352
[c44]Alexander Zien, Ulf Brefeld, Tobias Scheffer: Transductive support vector machines for structured variables. ICML 2007: 1183-1190
[c43]David S. Vogel, Ognian Asparouhov, Tobias Scheffer: Scalable look-ahead linear regression trees. KDD 2007: 757-764
[c42]Ulf Brefeld, Thoralf Klein, Tobias Scheffer: Support Vector Machines for Collective Inference. MLG 2007- 2006
[c41]Ulf Brefeld, Thomas Gärtner, Tobias Scheffer, Stefan Wrobel: Efficient co-regularised least squares regression. ICML 2006: 137-144
[c40]Ulf Brefeld, Tobias Scheffer: Semi-supervised learning for structured output variables. ICML 2006: 145-152
[c39]Steffen Bickel, Tobias Scheffer: Dirichlet-Enhanced Spam Filtering based on Biased Samples. NIPS 2006: 161-168
[c38]Michael Brückner, Peter Haider, Tobias Scheffer: Highly Scalable Discriminative Spam Filtering. TREC 2006
[e4]Johannes Fürnkranz, Tobias Scheffer, Myra Spiliopoulou (Eds.): Machine Learning: ECML 2006, 17th European Conference on Machine Learning, Berlin, Germany, September 18-22, 2006, Proceedings. Lecture Notes in Computer Science 4212, Springer 2006, ISBN 3-540-45375-X
[e3]Johannes Fürnkranz, Tobias Scheffer, Myra Spiliopoulou (Eds.): Knowledge Discovery in Databases: PKDD 2006, 10th European Conference on Principles and Practice of Knowledge Discovery in Databases, Berlin, Germany, September 18-22, 2006, Proceedings. Lecture Notes in Computer Science 4213, Springer 2006, ISBN 3-540-45374-1- 2005
[j10]Jörg Hakenberg, Steffen Bickel, Conrad Plake, Ulf Brefeld, Hagen Zahn, Lukas Faulstich, Ulf Leser, Tobias Scheffer: Systematic feature evaluation for gene name recognition. BMC Bioinformatics 6(S-1) (2005)
[j9]Tobias Scheffer: Finding association rules that trade support optimally against confidence. Intell. Data Anal. 9(4): 381-395 (2005)
[j8]David S. Vogel, Steffen Bickel, Peter Haider, Rolf Schimpfky, Peter Siemen, Steve Bridges, Tobias Scheffer: Classifying search engine queries using the web as background knowledge. SIGKDD Explorations 7(2): 117-122 (2005)
[c37]Tobias Scheffer: Multi-View Learning and Link Farm Discovery. Probabilistic, Logical and Relational Learning 2005
[c36]
[c35]Ulf Brefeld, Christoph Büscher, Tobias Scheffer: Multi-view Discriminative Sequential Learning. ECML 2005: 60-71
[c34]Isabel Drost, Tobias Scheffer: Thwarting the Nigritude Ultramarine: Learning to Identify Link Spam. ECML 2005: 96-107
[c33]
[c32]Isabel Drost, Steffen Bickel, Tobias Scheffer: Discovering Communities in Linked Data by Multi-view Clustering. GfKl 2005: 342-349
[c31]Szymon Jaroszewicz, Tobias Scheffer: Fast discovery of unexpected patterns in data, relative to a Bayesian network. KDD 2005: 118-127
[c30]Ulf Brefeld, Christoph Büscher, Tobias Scheffer: Multi-View Hidden Markov Perceptrons. LWA 2005: 134-138
[c29]Steffen Bickel, Peter Haider, Tobias Scheffer: Predicting Sentences using N-Gram Language Models. HLT/EMNLP 2005
[e2]Achim G. Hoffmann, Hiroshi Motoda, Tobias Scheffer (Eds.): Discovery Science, 8th International Conference, DS 2005, Singapore, October 8-11, 2005, Proceedings. Lecture Notes in Computer Science 3735, Springer 2005, ISBN 3-540-29230-6- 2004
[j7]Tobias Scheffer: Email answering assistance by semi-supervised text classification. Intell. Data Anal. 8(5): 481-493 (2004)
[j6]Mark-A. Krogel, Tobias Scheffer: Multi-Relational Learning, Text Mining, and Semi-Supervised Learning for Functional Genomics. Machine Learning 57(1-2): 61-81 (2004)
[c28]Steffen Bickel, Tobias Scheffer: Learning from Message Pairs for Automatic Email Answering. ECML 2004: 87-98
[c27]
[c26]
[c25]
[c24]
[c23]Isabel Drost, Tobias Scheffer: Efficiency and Stability of Clustering Algorithms for Linked Data. LWA 2004: 146
[c22]
[e1]Andreas Abecker, Steffen Bickel, Ulf Brefeld, Isabel Drost, Nicola Henze, Olaf Herden, Mirjam Minor, Tobias Scheffer, Ljiljana Stojanovic, Stephan Weibelzahl (Eds.): LWA 2004: Lernen - Wissensentdeckung - Adaptivität, Berlin, 4. - 6. Oktober 2004, Workshopwoche der GI-Fachgruppen/Arbeitskreise (1) Fachgruppe Adaptivität und Benutzermodellierung in Interaktiven Softwaresystemen (ABIS 2004), (2) Arbeitskreis Knowledge Discovery (AKKD 2004), (3) Fachgruppe Maschinelles Lernen (FGML 2004), (4) Fachgruppe Wissens- und Erfahrungsmanagement (FGWM 2004). Humbold-Universität Berlin 2004- 2003
[c21]Mark-A. Krogel, Tobias Scheffer: Effectiveness of Information Extraction, Multi-Relational, and Semi-Supervised Learning for Predicting Functional Properties of Genes. ICDM 2003: 569-572
[c20]
[c19]Mark-A. Krogel, Tobias Scheffer: Effectiveness of information extraction, multi-relational, and multi-view learning for prediction gene deletion experiments. BIOKDD 2003: 10-16
[c18]Michael Kockelkorn, Andreas Lüneburg, Tobias Scheffer: Using Transduction and Multi-view Learning to Answer Emails. PKDD 2003: 266-277- 2002
[j5]Tobias Scheffer, Stefan Wrobel: Finding the Most Interesting Patterns in a Database Quickly by Using Sequential Sampling. Journal of Machine Learning Research 3: 833-862 (2002)
[j4]Tobias Scheffer, Stefan Wrobel, Borislav Popov, Damyan Ognianov, Christian Decomain, Susanne Hoche: Lerning Hidden Markov Models for Information Extraction Actively from Partially Labeled Text. KI 16(2): 17-22 (2002)
[j3]Mark-A. Krogel, Marcus Denecke, Marco Landwehr, Tobias Scheffer: Combining Data and Text Mining Techniques for Yeast Gene Regulation Prediction: A Case Study. SIGKDD Explorations 4(2): 104-105 (2002)
[c17]Tobias Scheffer, Stefan Wrobel: A Scalable Constant-Memory Sampling Algorithm for Pattern Discovery in Large Databases. PKDD 2002: 397-409- 2001
[c16]Hans Gründel, Tino Naphtali, Christian Wiech, Jan-Marian Gluba, Maiken Rohdenburg, Tobias Scheffer: Clipping and Analyzing News Using Machine Learning Techniques. Discovery Science 2001: 87-99
[c15]Tobias Scheffer, Christian Decomain, Stefan Wrobel: Mining the Web with Active Hidden Markov Models. ICDM 2001: 645-646
[c14]Tobias Scheffer, Stefan Wrobel: Incremental Maximization of Non-Instance-Averaging Utility Functions with Applications to Knowledge Discovery Problems. ICML 2001: 481-488
[c13]Tobias Scheffer, Christian Decomain, Stefan Wrobel: Active Hidden Markov Models for Information Extraction. IDA 2001: 309-318
[c12]Tobias Scheffer: Finding Association Rules That Trade Support Optimally against Confidence. PKDD 2001: 424-435- 2000
[c11]Tobias Scheffer: Average-Case Analysis of Classification Algorithms for Boolean Functions and Decision Trees. ALT 2000: 194-208
[c10]
[c9]Tobias Scheffer: Predicting the Generalization Performance of Cross Validatory Model Selection Criteria. ICML 2000: 831-838
[c8]Tobias Scheffer, Stefan Wrobel: A sequential sampling algorithm for a general class of utility criteria. KDD 2000: 330-334
1990 – 1999
- 1999
[b1]Tobias Scheffer: Error estimation and model selection. DISKI 225, Infix 1999, ISBN 978-3-89601-225-8, pp. I-XI, 1-126
[j2]
[j1]
[c7]Andrew R. Mitchell, Tobias Scheffer, Arun Sharma, Frank Stephan: The VC-Dimension of Subclasses of Pattern. ALT 1999: 93-105
[c6]- 1998
[c5]Tobias Scheffer, Thorsten Joachims: Estimating the Expected Error of Empirical Minimizers for Model Selection. AAAI/IAAI 1998: 1200- 1997
[c4]Tobias Scheffer, Russell Greiner, Christian Darken: Why Experimentation can be better than "Perfect Guidance". ICML 1997: 331-339
[c3]- 1996
[c2]Tobias Scheffer, Ralf Herbrich, Fritz Wysotzki: Efficient Theta-Subsumption Based on Graph Algorithms. Inductive Logic Programming Workshop 1996: 212-228- 1995
[c1]Tobias Scheffer: A Generic Algorithm for Learning Rules with Hierarchical Exceptions. SBIA 1995: 181-190
Coauthor Index
data released under the ODC-BY 1.0 license. See also our legal information page
last updated on 2013-10-02 11:01 CEST by the dblp team



