Please note: This is a beta version of the new dblp website.
You can find the classic dblp view of this page here.
You can find the classic dblp view of this page here.
Stephen Muggleton
Stephen H. Muggleton
2010 – today
- 2013
[c96]Stephen H. Muggleton, Dianhuan Lin: Meta-Interpretive Learning of Higher-Order Dyadic Datalog: Predicate Invention revisited. IJCAI 2013- 2012
[j33]José Carlos Almeida Santos, Houssam Nassif, David Page, Stephen H. Muggleton, Michael J. E. Sternberg: Automated identification of protein-ligand interaction features using Inductive Logic Programming: a hexose binding case study. BMC Bioinformatics 13: 162 (2012)
[j32]Stephen Muggleton, Luc De Raedt, David Poole, Ivan Bratko, Peter A. Flach, Katsumi Inoue, Ashwin Srinivasan: ILP turns 20 - Biography and future challenges. Machine Learning 86(1): 3-23 (2012)
[j31]Stephen Muggleton, Jianzhong Chen: Guest editorial: special issue on Inductive Logic Programming (ILP 2011). Machine Learning 89(3): 213-214 (2012)
[c95]Steve Barker, Andrew J. I. Jones, Antonis C. Kakas, Robert A. Kowalski, Alessio Lomuscio, Rob Miller, Stephen Muggleton, Giovanni Sartor: The Scientific Contribution of Marek Sergot. Logic Programs, Norms and Action 2012: 4-11
[c94]Ghazal Afroozi Milani, David Bohan, Stuart J. Dunbar, Stephen Muggleton, Alan Raybould, Alireza Tamaddoni-Nezhad: Machine Learning and Text Mining of Trophic Links. ICMLA (2) 2012: 410-415
[e8]Stephen Muggleton, Alireza Tamaddoni-Nezhad, Francesca A. Lisi (Eds.): Inductive Logic Programming - 21st International Conference, ILP 2011, Windsor Great Park, UK, July 31 - August 3, 2011, Revised Selected Papers. Lecture Notes in Computer Science 7207, Springer 2012, ISBN 978-3-642-31950-1- 2011
[j30]Victor Lesk, Jan Taubert, Christopher J. Rawlings, Stuart J. Dunbar, Stephen Muggleton: WIBL: Workbench for Integrative Biological Learning. J. Integrative Bioinformatics 8(2) (2011)
[c93]Dianhuan Lin, Jianzhong Chen, Hiroaki Watanabe, Stephen Muggleton, Pooja Jain, Michael J. E. Sternberg, Charles Baxter, Richard A. Currie, Stuart J. Dunbar, Mark Earll, José Domingo Salazar: Does Multi-Clause Learning Help in Real-World Applications? ILP 2011: 221-237
[c92]Stephen H. Muggleton, Dianhuan Lin, Alireza Tamaddoni-Nezhad: MC-TopLog: Complete Multi-clause Learning Guided by a Top Theory. ILP 2011: 238-254
[c91]Alireza Tamaddoni-Nezhad, David Bohan, Alan Raybould, Stephen H. Muggleton: Machine Learning a Probabilistic Network of Ecological Interactions. ILP 2011: 332-346
[c90]Hiroaki Watanabe, Stephen H. Muggleton: Projection-Based PILP: Computational Learning Theory with Empirical Results. ILP 2011: 358-372- 2010
[c89]Jose Santos, Stephen Muggleton: Subsumer: A Prolog theta-subsumption engine. ICLP (Technical Communications) 2010: 172-181
[c88]Stephen Muggleton: Knowledge Mining Biological Network Models. Intelligent Information Processing 2010: 2
[c87]Stephen Muggleton, Jianzhong Chen, Hiroaki Watanabe, Stuart J. Dunbar, Charles Baxter, Richard A. Currie, José Domingo Salazar, Jan Taubert, Michael J. E. Sternberg: Variation of Background Knowledge in an Industrial Application of ILP. ILP 2010: 158-170
[c86]
[c85]Jose Santos, Stephen Muggleton: When Does It Pay Off to Use Sophisticated Entailment Engines in ILP? ILP 2010: 214-221
[c84]
2000 – 2009
- 2009
[j29]Alireza Tamaddoni-Nezhad, Stephen Muggleton: The lattice structure and refinement operators for the hypothesis space bounded by a bottom clause. Machine Learning 76(1): 37-72 (2009)
[j28]Huma Lodhi, Stephen Muggleton, Michael J. E. Sternberg: Multi-Class protein fold recognition using large margin logic based divide and conquer learning. SIGKDD Explorations 11(2): 117-122 (2009)
[c83]Huma Lodhi, Stephen Muggleton, Michael J. E. Sternberg: Learning Large Margin First Order Decision Lists for Multi-Class Classification. Discovery Science 2009: 168-183
[c82]José Carlos Almeida Santos, Alireza Tamaddoni-Nezhad, Stephen Muggleton: An ILP System for Learning Head Output Connected Predicates. EPIA 2009: 150-159
[c81]Stephen Muggleton, Aline Paes, Vítor Santos Costa, Gerson Zaverucha: Chess Revision: Acquiring the Rules of Chess Variants through FOL Theory Revision from Examples. ILP 2009: 123-130
[c80]Stephen Muggleton, José Carlos Almeida Santos, Alireza Tamaddoni-Nezhad: ProGolem: A System Based on Relative Minimal Generalisation. ILP 2009: 131-148
[c79]
[c78]Huma Lodhi, Stephen Muggleton, Michael J. E. Sternberg: Multi-class protein fold recognition using large margin logic based divide and conquer learning. KDD Workshop on Statistical and Relational Learning in Bioinformatics 2009: 22-26- 2008
[j27]Stephen Muggleton, Ramón P. Otero, Simon Colton: Guest editorial: special issue on Inductive Logic Programming. Machine Learning 70(2-3): 119-120 (2008)
[j26]Stephen Muggleton, Alireza Tamaddoni-Nezhad: QG/GA: a stochastic search for Progol. Machine Learning 70(2-3): 121-133 (2008)
[j25]Thomas G. Dietterich, Pedro Domingos, Lise Getoor, Stephen Muggleton, Prasad Tadepalli: Structured machine learning: the next ten years. Machine Learning 73(1): 3-23 (2008)
[j24]Jianzhong Chen, Stephen Muggleton, José Carlos Almeida Santos: Learning probabilistic logic models from probabilistic examples. Machine Learning 73(1): 55-85 (2008)
[c77]Andreas Fidjeland, Wayne Luk, Stephen Muggleton: A Customisable Multiprocessor for Application-Optimised Inductive Logic Programming. BCS Int. Acad. Conf. 2008: 318-330
[c76]Stephen Muggleton, José Carlos Almeida Santos, Alireza Tamaddoni-Nezhad: TopLog: ILP Using a Logic Program Declarative Bias. ICLP 2008: 687-692
[c75]Jianzhong Chen, Lawrence A. Kelley, Stephen Muggleton, Michael J. E. Sternberg: Protein Fold Discovery Using Stochastic Logic Programs. Probabilistic Inductive Logic Programming 2008: 244-262
[c74]Alireza Tamaddoni-Nezhad, Stephen Muggleton: A Note on Refinement Operators for IE-Based ILP Systems. ILP 2008: 297-314
[c73]Stephen Muggleton, Jianzhong Chen: A Behavioral Comparison of Some Probabilistic Logic Models. Probabilistic Inductive Logic Programming 2008: 305-324
[c72]Stephen Muggleton: Developing Robust Synthetic Biology Designs Using a Microfluidic Robot Scientist. SBIA 2008: 4
[c71]
[e7]Luc De Raedt, Thomas G. Dietterich, Lise Getoor, Kristian Kersting, Stephen Muggleton (Eds.): Probabilistic, Logical and Relational Learning - A Further Synthesis, 15.04. - 20.04.2007. Dagstuhl Seminar Proceedings 07161, Internationales Begegnungs- und Forschungszentrum fuer Informatik (IBFI), Schloss Dagstuhl, Germany 2008
[e6]Luc De Raedt, Paolo Frasconi, Kristian Kersting, Stephen Muggleton (Eds.): Probabilistic Inductive Logic Programming - Theory and Applications. Lecture Notes in Computer Science 4911, Springer 2008, ISBN 978-3-540-78651-1- 2007
[c70]Luc De Raedt, Thomas G. Dietterich, Lise Getoor, Kristian Kersting, Stephen Muggleton: 07161 Abstracts Collection -- Probabilistic, Logical and Relational Learning - A Further Synthesis. Probabilistic, Logical and Relational Learning - A Further Synthesis 2007
[c69]Jianzhong Chen, Stephen Muggleton, Jose Santos: Learning Probabilistic Logic Models from Probabilistic Examples (Extended Abstract). ILP 2007: 22-23
[c68]Jianzhong Chen, Stephen Muggleton, Jose Santos: Abductive Stochastic Logic Programs for Metabolic Network Inhibition Learning. MLG 2007
[e5]Stephen Muggleton, Ramón P. Otero, Alireza Tamaddoni-Nezhad (Eds.): Inductive Logic Programming, 16th International Conference, ILP 2006, Santiago de Compostela, Spain, August 24-27, 2006, Revised Selected Papers. Lecture Notes in Computer Science 4455, Springer 2007, ISBN 978-3-540-73846-6- 2006
[j23]Simon Colton, Stephen Muggleton: Mathematical applications of inductive logic programming. Machine Learning 64(1-3): 25-64 (2006)
[j22]Alireza Tamaddoni-Nezhad, Raphael Chaleil, Antonis C. Kakas, Stephen Muggleton: Application of abductive ILP to learning metabolic network inhibition from temporal data. Machine Learning 64(1-3): 209-230 (2006)
[c67]
[c66]
[c65]Jianzhong Chen, Lawrence A. Kelley, Stephen Muggleton, Michael J. E. Sternberg: Multi-class Prediction Using Stochastic Logic Programs. ILP 2006: 109-124
[c64]
[e4]Luc De Raedt, Thomas G. Dietterich, Lise Getoor, Stephen Muggleton (Eds.): Probabilistic, Logical and Relational Learning - Towards a Synthesis, 30. January - 4. February 2005. Dagstuhl Seminar Proceedings 05051, Internationales Begegnungs- und Forschungszentrum für Informatik (IBFI), Schloss Dagstuhl, Germany 2006- 2005
[c63]Luc De Raedt, Thomas G. Dietterich, Lise Getoor, Stephen Muggleton: 05051 Executive Summary - Probabilistic, Logical and Relational Learning - Towards a Synthesis. Probabilistic, Logical and Relational Learning 2005
[c62]Luc De Raedt, Thomas G. Dietterich, Lise Getoor, Stephen Muggleton: 05051 Abstracts Collection - Probabilistic, Logical and Relational Learning - Towards a Synthesis. Probabilistic, Logical and Relational Learning 2005
[c61]Stephen Muggleton, Huma Lodhi, Ata Amini, Michael J. E. Sternberg: Support Vector Inductive Logic Programming. Discovery Science 2005: 163-175
[c60]Alireza Tamaddoni-Nezhad, Raphael Chaleil, Antonis C. Kakas, Stephen Muggleton: Abduction and induction for learning models of inhibition in metabolic networks. ICMLA 2005
[c59]
[c58]Hiroaki Watanabe, Stephen Muggleton: Learning Stochastic Logical Automaton. JSAI Workshops 2005: 201-211
[c57]Huma Lodhi, Stephen Muggleton: Computing Confidence Measures in Stochastic Logic Programs. MICAI 2005: 890-899- 2004
[c56]Huma Lodhi, Stephen Muggleton: Modelling Metabolic Pathways Using Stochastic Logic Programs-Based Ensemble Methods. CMSB 2004: 119-133
[c55]Alireza Tamaddoni-Nezhad, Antonis C. Kakas, Stephen Muggleton, Florencio Pazos: Modelling Inhibition in Metabolic Pathways Through Abduction and Induction. ILP 2004: 305-322- 2003
[c54]
[c53]Stephen Muggleton, Alireza Tamaddoni-Nezhad, Hiroaki Watanabe: Induction of Enzyme Classes from Biological Databases. ILP 2003: 269-280
[c52]Jung-Wook Bang, Alexandros Pappas, Duncan Fyfe Gillies, Stephen Muggleton: Interpretation of Hidden Node Methodology in Automated Classification of Neural Cell Morphology. METMBS 2003: 527-532- 2002
[j21]Marcel Turcotte, Stephen Muggleton, Michael J. E. Sternberg: Generating Protein Three-dimensional Fold Signatures using Inductive Logic Programming. Computers & Chemistry 26(1): 57-64 (2002)
[c51]Andreas Fidjeland, Wayne Luk, Stephen Muggleton: Scalable acceleration of inductive logic programs. FPT 2002: 252-259
[c50]Stephen Muggleton: Learning Structure and Parameters of Stochastic Logic Programs. ILP 2002: 198-206
[c49]Alireza Tamaddoni-Nezhad, Stephen Muggleton: A Genetic Algorithms Approach to ILP. ILP 2002: 285-300- 2001
[j20]Christopher H. Bryant, Stephen Muggleton, Stephen G. Oliver, Douglas B. Kell, Philip G. K. Reiser, Ross D. King: Combining Inductive Logic Programming, Active Learning and Robotics to Discover the Function of Genes. Electron. Trans. Artif. Intell. 5(B): 1-36 (2001)
[j19]Philip G. K. Reiser, Ross D. King, Douglas B. Kell, Stephen Muggleton, Christopher H. Bryant, Stephen G. Oliver: Developing a Logical Model of Yeast Metabolism. Electron. Trans. Artif. Intell. 5(B): 223-244 (2001)
[j18]A. P. Cootes, Stephen Muggleton, R. B. Greaves, Michael J. E. Sternberg: Automatic determination of protein fold signatures from structural superpositions. Electron. Trans. Artif. Intell. 5(B): 245-274 (2001)
[j17]Stephen Muggleton, Christopher H. Bryant, Ashwin Srinivasan, Alex Whittaker, Simon Topp, Christopher J. Rawlings: Are Grammatical Representations Useful for Learning from Biological Sequence Data? - A Case Study. Journal of Computational Biology 8(5): 493-521 (2001)
[j16]Marcel Turcotte, Stephen Muggleton, Michael J. E. Sternberg: The Effect of Relational Background Knowledge on Learning of Protein Three-Dimensional Fold Signatures. Machine Learning 43(1/2): 81-95 (2001)- 2000
[j15]Marcel Turcotte, Stephen Muggleton, Michael J. E. Sternberg: Use of Inductive Logic Programming to Learn Principles of Protein Structure. Electron. Trans. Artif. Intell. 4(B): 119-124 (2000)
[j14]Stephen Muggleton: Learning Stochastic Logic Programs. Electron. Trans. Artif. Intell. 4(B): 141-153 (2000)
[c48]Stephen Muggleton, Christopher H. Bryant, Ashwin Srinivasan: Measuring Performance when Positives Are Rare: Relative Advantage versus Predictive Accuracy - A Biological Case Study. ECML 2000: 300-312
[c47]Stephen Muggleton, Christopher H. Bryant, Ashwin Srinivasan: Learning Chomsky-like Grammars for Biological Sequence Families. ICML 2000: 631-638
[c46]Stephen Muggleton, Christopher H. Bryant: Theory Completion Using Inverse Entailment. ILP 2000: 130-146
[c45]Alireza Tamaddoni-Nezhad, Stephen Muggleton: Searching the Subsumption Lattice by a Genetic Algorithm. ILP 2000: 243-252
1990 – 1999
- 1999
[j13]Stephen Muggleton: Inductive Logic Programming: Issues, Results and the Challenge of Learning Language in Logic. Artif. Intell. 114(1-2): 283-296 (1999)
[j12]Stephen Muggleton: Scientific Knowledge Discovery Using Inductive Logic Programming. Commun. ACM 42(11): 42-46 (1999)
[j11]Stephen Muggleton, David Page: Guest Editors' Introduction: Inductive Logic Programming. J. Log. Program. 40(2-3): 125-126 (1999)
[c44]
[c43]
[e3]Koichi Furukawa, Donald Michie, Stephen Muggleton (Eds.): Machine Intelligence 15, Intelligent Agents [St. Catherine's College, Oxford, July 1995]. Oxford University Press 1999, ISBN 0-19-853867-7- 1998
[j10]Paul W. Finn, Stephen Muggleton, David Page, Ashwin Srinivasan: Pharmacophore Discovery Using the Inductive Logic Programming System PROGOL. Machine Learning 30(2-3): 241-270 (1998)
[c42]Stephen Muggleton: Knowledge Discovery in Biological and Chemical Domains. Discovery Science 1998: 58-59
[c41]Stephen Muggleton, Ashwin Srinivasan, Ross D. King, Michael J. E. Sternberg: Biochemical Knowledge Discovery Using Inductive Logic Programming. Discovery Science 1998: 326-341
[c40]Stephen Muggleton: Inductive Logic Programming: Issues, Results and the LLL Challenge (abstract). ECAI 1998: 697
[c39]
[c38]Marcel Turcotte, Stephen Muggleton, Michael J. E. Sternberg: Application of Inductive Logic Programming to Discover Rules Governing the Three-Dimensional Topology of Protein Structure. ILP 1998: 53-64
[c37]Khalid Khan, Stephen Muggleton, Rupert Parson: Repeat Learning Using Predicate Invention. ILP 1998: 165-174
[c36]
[c35]Saso Dzeroski, Nico Jacobs, Martín Molina, Carlos Moure, Stephen Muggleton, Wim Van Laer: Detecting Traffic Problems with ILP. ILP 1998: 281-290
[c34]Sam Roberts, Wim Van Laer, Nico Jacobs, Stephen Muggleton, Jeremy Broughton: A Comparison of ILP and Propositional Systems on Propositional Traffic Data. ILP 1998: 291-299- 1997
[j9]
[c33]Stephen Muggleton, Donald Michie: Machine Intelligibility and the Duality Principle. Software Agents and Soft Computing 1997: 276-292
[c32]Ashwin Srinivasan, Ross D. King, Stephen Muggleton, Michael J. E. Sternberg: The Predictive Toxicology Evaluation Challenge. IJCAI (1) 1997: 4-9
[c31]
[c30]Ashwin Srinivasan, Ross D. King, Stephen Muggleton, Michael J. E. Sternberg: Carcinogenesis Predictions Using ILP. ILP 1997: 273-287
[e2]Stephen Muggleton (Ed.): Inductive Logic Programming, 6th International Workshop, ILP-96, Stockholm, Sweden, August 26-28, 1996, Selected Papers. Lecture Notes in Computer Science 1314, Springer 1997, ISBN 3-540-63494-0- 1996
[j8]Ashwin Srinivasan, Stephen Muggleton, Michael J. E. Sternberg, Ross D. King: Theories for Mutagenicity: A Study in First-Order and Feature-Based Induction. Artif. Intell. 85(1-2): 277-299 (1996)
[c29]Stephen Muggleton, David Page, Ashwin Srinivasan: An Initial Experiment into Stereochemistry-Based Drug Design Using Inductive Logic Programming. Inductive Logic Programming Workshop 1996: 25-40
[c28]- 1995
[j7]Ivan Bratko, Stephen Muggleton: Applications of Inductive Logic Programming. Commun. ACM 38(11): 65-70 (1995)
[j6]Stephen Muggleton, Fumio Mizoguchi, Koichi Furukawa: Special Issue on Inductive Logic Programming. New Generation Comput. 13(3&4): 243-244 (1995)
[j5]
[c27]
[c26]Rupert Parson, Stephen Muggleton: An Experiment with Browsers that Learn. Machine Intelligence 15 1995: 176-184
[c25]Stephen Muggleton, David Page: A Learnability Model for Universal Representations and Its Application to Top-down Induction of Decision Trees. Machine Intelligence 15 1995: 248-267
[c24]Michael J. E. Sternberg, Ross D. King, Ashwin Srinivasan, Stephen Muggleton: Drug Design by Machine Learning. Machine Intelligence 15 1995: 328-338
[e1]Koichi Furukawa, Donald Michie, Stephen Muggleton (Eds.): Machine Intelligence 14, Proceedings of the Fourteenth Machine Intelligence Workshop, held at Hitachi Advanced Research Laboratories, Tokyo, Japan, November 1993. Oxford University Press 1995- 1994
[j4]Stephen Muggleton: Predicate invention and utilization. J. Exp. Theor. Artif. Intell. 6(1): 121-130 (1994)
[j3]Stephen Muggleton, Luc De Raedt: Inductive Logic Programming: Theory and Methods. J. Log. Program. 19/20: 629-679 (1994)
[j2]Stephen Muggleton: Inductive Logic Programming: Derivations, Successes and Shortcomings. SIGART Bulletin 5(1): 5-11 (1994)
[c23]
[c22]
[c21]
[c20]Ashwin Srinivasan, Stephen Muggleton, Michael Bain: The Justification of Logical Theories based on Data Compression. Machine Intelligence 13 1994: 87-121
[c19]Michael J. E. Sternberg, R. A. Lewis, Ross D. King, Stephen Muggleton: Machine Learning and biomolecular modelling. Machine Intelligence 13 1994: 193-212
[c18]Michael Bain, Stephen Muggleton: Learning optimal chess strategies. Machine Intelligence 13 1994: 291-309- 1993
[c17]Stephen Muggleton: Optimal Layered Learning: A PAC Approach to Incremental Sampling. ALT 1993: 37-44
[c16]Stephen Muggleton: Inductive Logic Programming: Derivations, Successes and Shortcomings. ECML 1993: 21-37
[c15]Saso Dzeroski, Stephen Muggleton, Stuart J. Russell: Learnability of Constrained Logic Programs. ECML 1993: 342-347
[c14]- 1992
[c13]Saso Dzeroski, Stephen Muggleton, Stuart J. Russell: PAC-Learnability of Determinate Logic Programs. COLT 1992: 128-135
[c12]Stephen Muggleton: Developments in Inductive Logic Programming, Panel Position Paper. FGCS 1992: 1071-1073
[c11]
[c10]Stephen Muggleton, Ashwin Srinivasan, Michael Bain: Compression, Significance, and Accuracy. ML 1992: 338-347- 1991
[j1]
[c9]Pavel Brazdil, Stephen Muggleton: Learning to Relate Terms in a Multiple Agent Environment. EWSL 1991: 424-439
[c8]Ivan Bratko, Stephen Muggleton, Alen Varsek: Learning Qualitative Models of Dynamic Systems. ML 1991: 385-388- 1990
[b1]Stephen Muggleton: Inductive acquisition of expert knowledge. Turing Institute Pr. 1990, ISBN 978-0-201-17561-5, pp. I-XI, 1-220
[c7]
[c6]
1980 – 1989
- 1989
[c5]Stephen Muggleton, Michael Bain, Jean Hayes Michie, Donald Michie: An Experimental Comparison of Human and Machine Learning Formalisms. ML 1989: 113-118- 1988
[c4]Stephen Muggleton: A Strategy for Constructing New Predicates in First-Order Logic. EWSL 1988: 123-130
[c3]Stephen Muggleton, Wray L. Buntine: Machine Invention of First Order Predicates by Inverting Resolution. ML 1988: 339-352- 1987
[c2]
[c1]
Coauthor Index
data released under the ODC-BY 1.0 license. See also our legal information page
last updated on 2013-10-02 11:07 CEST by the dblp team



