Please note: This is a beta version of the new dblp website.
You can find the classic dblp view of this page here.
You can find the classic dblp view of this page here.
Thomas Martinetz
2010 – today
- 2013
[j23]Sascha Klement, Silke Anders, Thomas Martinetz: The Support Feature Machine: Classification with the Least Number of Features and Application to Neuroimaging Data. Neural Computation 25(6): 1548-1584 (2013)
[c47]Jens Hocke, Thomas Martinetz: Feature Weighting by Maximum Distance Minimization. ICANN 2013: 420-425- 2012
[j22]Thomas Binder, Thomas Martinetz: On the boundedness of an Iteration involving Points on the Hypersphere. Int. J. Comput. Geometry Appl. 22(6): 499-516 (2012)
[j21]Jens Hocke, Kai Labusch, Erhardt Barth, Thomas Martinetz: Sparse Coding and Selected Applications. KI 26(4): 349-355 (2012)
[j20]Eleonora Vig, Michael Dorr, Thomas Martinetz, Erhardt Barth: Intrinsic Dimensionality Predicts the Saliency of Natural Dynamic Scenes. IEEE Trans. Pattern Anal. Mach. Intell. 34(6): 1080-1091 (2012)
[c46]Henry Schütze, Thomas Martinetz, Silke Anders, Amir Madany Mamlouk: A Multivariate Approach to Estimate Complexity of FMRI Time Series. ICANN (2) 2012: 540-547- 2011
[j19]Jiajie Zhang, Amir Madany Mamlouk, Thomas Martinetz, Suhua Chang, Jing Wang, Rolf Hilgenfeld: PhyloMap: an algorithm for visualizing relationships of large sequence data sets and its application to the influenza A virus genome. BMC Bioinformatics 12: 248 (2011)
[j18]Krishna Kumar Kandaswamy, Ganesan Pugalenthi, Mehrnaz Khodam Hazrati, Kai-Uwe Kalies, Thomas Martinetz: BLProt: Prediction of bioluminescent proteins based on Support Vector Machine and ReliefF feature selection. BMC Bioinformatics 12: 345 (2011)
[j17]Eleonora Vig, Michael Dorr, Thomas Martinetz, Erhardt Barth: Eye Movements Show Optimal Average Anticipation with Natural Dynamic Scenes. Cognitive Computation 3(1): 79-88 (2011)
[j16]John A. Lee, Frank-Michael Schleif, Thomas Martinetz: Advances in artificial neural networks, machine learning, and computational intelligence. Neurocomputing 74(9): 1299-1300 (2011)
[j15]Kai Labusch, Erhardt Barth, Thomas Martinetz: Soft-competitive learning of sparse codes and its application to image reconstruction. Neurocomputing 74(9): 1418-1428 (2011)
[j14]Kai Labusch, Erhardt Barth, Thomas Martinetz: Robust and Fast Learning of Sparse Codes With Stochastic Gradient Descent. J. Sel. Topics Signal Processing 5(5): 1048-1060 (2011)
[c45]Sascha Klement, Thomas Martinetz: On the Problem of Finding the Least Number of Features by L1-Norm Minimisation. ICANN (1) 2011: 315-322- 2010
[j13]Martin Böhme, Martin Haker, Thomas Martinetz, Erhardt Barth: Shading constraint improves accuracy of time-of-flight measurements. Computer Vision and Image Understanding 114(12): 1329-1335 (2010)
[c44]
[c43]Eleonora Vig, Michael Dorr, Thomas Martinetz, Erhardt Barth: A Learned Saliency Predictor for Dynamic Natural Scenes. ICANN (3) 2010: 52-61
[c42]Sascha Klement, Thomas Martinetz: The Support Feature Machine for Classifying with the Least Number of Features. ICANN (2) 2010: 88-93
[c41]Sascha Klement, Thomas Martinetz: A New Approach to Classification with the Least Number of Features. ICMLA 2010: 141-146
[c40]Fabian Timm, Thomas Martinetz: Statistical Fourier Descriptors for Defect Image Classification. ICPR 2010: 4190-4193
[i2]Thomas Binder, Thomas Martinetz: On the boundedness of an iteration involving points on the hypersphere. CoRR abs/1001.1624 (2010)
2000 – 2009
- 2009
[j12]Dirk Repsilber, Thomas Martinetz, Mats Björklund: Adaptive Dynamics of Regulatory Networks: Size Matters. EURASIP J. Bioinformatics and Systems Biology 2009 (2009)
[j11]Kai Labusch, Erhardt Barth, Thomas Martinetz: Sparse Coding Neural Gas: Learning of overcomplete data representations. Neurocomputing 72(7-9): 1547-1555 (2009)
[j10]Thomas Martinetz, Kai Labusch, Daniel Schneegaß: SoftDoubleMaxMinOver: Perceptron-Like Training of Support Vector Machines. IEEE Transactions on Neural Networks 20(7): 1061-1072 (2009)
[c39]Martin Haker, Martin Böhme, Thomas Martinetz, Erhardt Barth: Self-Organizing Maps for Pose Estimation with a Time-of-Flight Camera. Dyn3D 2009: 142-153
[c38]Martin Böhme, Martin Haker, Kolja Riemer, Thomas Martinetz, Erhardt Barth: Face Detection Using a Time-of-Flight Camera. Dyn3D 2009: 167-176
[c37]Martin Haker, Martin Böhme, Thomas Martinetz, Erhardt Barth: Deictic Gestures with a Time-of-Flight Camera. Gesture Workshop 2009: 110-121
[c36]Martin Haker, Thomas Martinetz, Erhardt Barth: Multimodal Sparse Features for Object Detection. ICANN (2) 2009: 923-932
[c35]Fabian Timm, Sascha Klement, Thomas Martinetz, Erhardt Barth: Welding Inspection using Novel Specularity Features and a One-class SVM. VISAPP (1) 2009: 146-153
[c34]Fabian Timm, Thomas Martinetz, Erhardt Barth: Optical Inspection of Welding Seams. VISIGRAPP (Selected Papers) 2009: 269-282
[c33]Kai Labusch, Erhardt Barth, Thomas Martinetz: Approaching the Time Dependent Cocktail Party Problem with Online Sparse Coding Neural Gas. WSOM 2009: 145-153- 2008
[j9]Martin Böhme, Martin Haker, Thomas Martinetz, Erhardt Barth: A facial feature tracker for human-computer interaction based on 3D Time-Of-Flight cameras. IJISTA 5(3/4): 264-273 (2008)
[j8]Kai Labusch, Erhardt Barth, Thomas Martinetz: Simple Method for High-Performance Digit Recognition Based on Sparse Coding. IEEE Transactions on Neural Networks 19(11): 1985-1989 (2008)
[c32]Kai Labusch, Fabian Timm, Thomas Martinetz: Simple Incremental One-Class Support Vector Classification. DAGM-Symposium 2008: 21-30
[c31]Kai Labusch, Erhardt Barth, Thomas Martinetz: Learning Data Representations with Sparse Coding Neural Gas. ESANN 2008: 233-238
[c30]Martin Böhme, Michael Dorr, Mathis Graw, Thomas Martinetz, Erhardt Barth: A software framework for simulating eye trackers. ETRA 2008: 251-258
[c29]Sascha Klement, Amir Madany Mamlouk, Thomas Martinetz: Reliability of Cross-Validation for SVMs in High-Dimensional, Low Sample Size Scenarios. ICANN (1) 2008: 41-50
[c28]Kai Labusch, Erhardt Barth, Thomas Martinetz: Sparse Coding Neural Gas for the Separation of Noisy Overcomplete Sources. ICANN (1) 2008: 788-797
[c27]Fabian Timm, Sascha Klement, Thomas Martinetz: Fast model selection for MaxMinOver-based training of support vector machines. ICPR 2008: 1-4
[c26]Daniel Schneegaß, Steffen Udluft, Thomas Martinetz: Uncertainty propagation for quality assurance in Reinforcement Learning. IJCNN 2008: 2588-2595- 2007
[c25]Daniel Schneegaß, Steffen Udluft, Thomas Martinetz: Neural Rewards Regression for near-optimal policy identification in Markovian and partial observable environments. ESANN 2007: 301-306
[c24]Daniel Schneegaß, Anton Maximilian Schäfer, Thomas Martinetz: The Intrinsic Recurrent Support Vector Machine. ESANN 2007: 325-330
[c23]Daniel Schneegaß, Steffen Udluft, Thomas Martinetz: Explicit Kernel Rewards Regression for data-efficient near-optimal policy identification. ESANN 2007: 337-342
[c22]Daniel Schneegaß, Steffen Udluft, Thomas Martinetz: Improving Optimality of Neural Rewards Regression for Data-Efficient Batch Near-Optimal Policy Identification. ICANN (1) 2007: 109-118- 2006
[j7]Martin Böhme, Michael Dorr, Christopher Krause, Thomas Martinetz, Erhardt Barth: Eye movement predictions on natural videos. Neurocomputing 69(16-18): 1996-2004 (2006)
[c21]Daniel Schneegaß, Steffen Udluft, Thomas Martinetz: Kernel Rewards Regression: An Information Efficient Batch Policy Iteration Approach. Artificial Intelligence and Applications 2006: 428-433
[c20]Daniel Schneegaß, Thomas Martinetz, Michael Clausohm: OnlineDoubleMaxMinOver: a simple approximate time and information efficient online Support Vector Classification method. ESANN 2006: 575-580
[c19]Martin Böhme, Michael Dorr, Thomas Martinetz, Erhardt Barth: Gaze-contingent temporal filtering of video. ETRA 2006: 109-115
[c18]Daniel Schneegaß, Kai Labusch, Thomas Martinetz: MaxMinOver Regression: A Simple Incremental Approach for Support Vector Function Approximation. ICANN (1) 2006: 150-158
[c17]Erhardt Barth, Michael Dorr, Martin Böhme, Karl R. Gegenfurtner, Thomas Martinetz: Guiding Eye Movements for Better Communication and Augmented Vision. PIT 2006: 1-8
[c16]Michael Dorr, Martin Böhme, Thomas Martinetz, Erhardt Barth: Gaze-Contingent Spatio-temporal Filtering in a Head-Mounted Display. PIT 2006: 205-207
[c15]André Meyer, Martin Böhme, Thomas Martinetz, Erhardt Barth: A Single-Camera Remote Eye Tracker. PIT 2006: 208-211
[c14]Thomas Martinetz, Amir Madany Mamlouk, Cicero Mota: Fast and Easy Computation of Approximate Smallest Enclosing Balls. SIBGRAPI 2006: 163-170- 2005
[j6]Anke Meyer-Bäse, Karsten Jancke, Axel Wismüller, Simon Foo, Thomas Martinetz: Medical image compression using topology-preserving neural networks. Eng. Appl. of AI 18(4): 383-392 (2005)
[j5]Amir Madany Mamlouk, Hannah Sharp, Kerstin M. L. Menne, Ulrich G. Hofmann, Thomas Martinetz: Unsupervised spike sorting with ICA and its evaluation using GENESIS simulations. Neurocomputing 65-66: 275-282 (2005)
[c13]Michael Dorr, Thomas Martinetz, Martin Böhme, Erhardt Barth: Visibility of temporal blur on a gaze-contingent display. APGV 2005: 33-36
[c12]Thomas Martinetz, Kai Labusch, Daniel Schneegaß: SoftDoubleMinOver: A Simple Procedure for Maximum Margin Classification. ICANN (2) 2005: 301-306
[e1]Uwe Brinkschulte, Jürgen Becker, Dietmar Fey, Christian Hochberger, Thomas Martinetz, Christian Müller-Schloer, Hartmut Schmeck, Theo Ungerer, Rolf P. Würtz (Eds.): 18th International Conference on Architecture of Computing Systems, Workshops, Innsbruck, Austria, March 2005. VDE Verlag 2005, ISBN 3-8007-2880-X- 2004
[j4]Jan T. Kim, Jan E. Gewehr, Thomas Martinetz: Binding Matrix: a Novel Approach for Binding Site Recognition. J. Bioinformatics and Computational Biology 2(2): 289-308 (2004)
[c11]Thomas Martinetz: MinOver Revisited for Incremental Support-Vector-Classification. DAGM-Symposium 2004: 187-194
[c10]Martin Böhme, Christopher Krause, Thomas Martinetz, Erhardt Barth: Saliency Extraction for Gaze-Contingent Displays. GI Jahrestagung (2) 2004: 646-650- 2003
[c9]Amir Madany Mamlouk, Jan T. Kim, Erhardt Barth, Michael Brauckmann, Thomas Martinetz: One-Class Classification with Subgaussians. DAGM-Symposium 2003: 346-353
[c8]Anke Meyer-Bäse, Thomas D. Otto, Thomas Martinetz, Dorothee Auer, Axel Wismüller: Model-Free Functional MRI Analysis Using Topographic Independent Component Analysis. ESANN 2003: 509-514- 2001
[c7]Daniel Polani, Thomas Martinetz, Jan T. Kim: An Information-Theoretic Approach for the Quantification of Relevance. ECAL 2001: 704-713
[c6]Jan T. Kim, Thomas Martinetz, Daniel Polani: On the Effects of Transcription Factor Properties on the Information Content of Binding Sites. German Conference on Bioinformatics 2001: 192-194
[c5]Martin Haker, André Meyer, Daniel Polani, Thomas Martinetz: A Method for Incorporation of New Evidence to Improve World State Estimation. RoboCup 2001: 362-367- 2000
[c4]Daniel Polani, Thomas Martinetz: Team Description for Lucky Lübeck - Evidence-Based World State Estimation. RoboCup 2000: 481-484
1990 – 1999
- 1999
[c3]Claus O. Wilke, Christopher Ronnewinkel, Thomas Martinetz: Molecular Evolution in Time-Dependent Environments. ECAL 1999: 417-421
[i1]Christopher Ronnewinkel, Claus O. Wilke, Thomas Martinetz: Genetic Algorithms in Time-Dependent Environments. CoRR physics/9911006 (1999)- 1997
[j3]Thomas Villmann, Ralf Der, J. Michael Herrmann, Thomas Martinetz: Topology preservation in self-organizing feature maps: exact definition and measurement. IEEE Trans. Neural Netw. Learning Syst. 8(2): 256-266 (1997)- 1994
[j2]Thomas Martinetz, Klaus Schulten: Topology representing networks. Neural Networks 7(3): 507-522 (1994)
[c2]Thomas Villmann, Ralf Der, J. Michael Herrmann, Thomas Martinetz: Topology Preservation in Self-Organizing Feature Maps: General Definition and Efficient Measurement. Fuzzy Days 1994: 159-166- 1992
[b3]Helge Ritter, Thomas Martinetz, Klaus Schulten: Neural computation and self-organizing maps - an introduction. Computation and neural systems series, Addison-Wesley 1992, ISBN 978-0-201-55443-4, pp. 1-306
[b2]Thomas Martinetz: Selbstorganisierende neuronale Netzwerkmodelle zur Bewegungssteuerung. DISKI 14, Infix Verlag, St. Augustin, Germany 1992, ISBN 3-929037-14-9- 1991
[b1]Helge Ritter, Thomas Martinetz, Klaus Schulten: Neuronale Netze - eine Einführung in die Neuroinformatik selbstorganisierter Netzwerke (2. Aufl.). Reihe Künstliche Intelligenz, Addison-Wesley 1991, ISBN 978-3-89319-131-4, pp. 1-325
[c1]Stan Berkovitch, Philippe Dalger, Ted Hesselroth, Thomas Martinetz, Benoît Noël, Jörg A. Walter, Klaus Schulten: Vector Quantization Algorithm for Time Series Prediction and Visuo-Motor Control of Robots. Wissensbasierte Systeme 1991: 443-447
1980 – 1989
- 1989
[j1]Helge Ritter, Thomas Martinetz, Klaus Schulten: Topology-conserving maps for learning visuo-motor-coordination. Neural Networks 2(3): 159-168 (1989)
Coauthor Index
data released under the ODC-BY 1.0 license. See also our legal information page
last updated on 2013-10-02 11:13 CEST by the dblp team



