Please note: This is a beta version of the new dblp website.
You can find the classic dblp view of this page here.
You can find the classic dblp view of this page here.
Thomas Müller-Gronbach
2010 – today
- 2012
[j12]Thomas Müller-Gronbach, Klaus Ritter, Larisa Yaroslavtseva: Derandomization of the Euler scheme for scalar stochastic differential equations. J. Complexity 28(2): 139-153 (2012)- 2011
[j11]Thomas Müller-Gronbach, Leszek Plaskota, Wolfgang Ch. Schmid: Guest Editors' Preface. J. Complexity 27(3-4): 263 (2011)
[j10]Ben Niu, Fred J. Hickernell, Thomas Müller-Gronbach, Klaus Ritter: Deterministic multi-level algorithms for infinite-dimensional integration on RN. J. Complexity 27(3-4): 331-351 (2011)- 2010
[j9]Fred J. Hickernell, Thomas Müller-Gronbach, Ben Niu, Klaus Ritter: Multi-level Monte Carlo algorithms for infinite-dimensional integration on RN. J. Complexity 26(3): 229-254 (2010)
2000 – 2009
- 2009
[j8]Jakob Creutzig, Steffen Dereich, Thomas Müller-Gronbach, Klaus Ritter: Infinite-Dimensional Quadrature and Approximation of Distributions. Foundations of Computational Mathematics 9(4): 391-429 (2009)- 2007
[j7]Thomas Müller-Gronbach, Klaus Ritter: Lower Bounds and Nonuniform Time Discretization for Approximation of Stochastic Heat Equations. Foundations of Computational Mathematics 7(2): 135-181 (2007)
[j6]Jakob Creutzig, Thomas Müller-Gronbach, Klaus Ritter: Free-knot spline approximation of stochastic processes. J. Complexity 23(4-6): 867-889 (2007)- 2006
[j5]- 2005
[e1]Thomas Müller-Gronbach, Erich Novak, Knut Petras, Joseph F. Traub (Eds.): Algorithms and Complexity for Continuous Problems, 26. September - 1. October 2004. Dagstuhl Seminar Proceedings 04401, IBFI, Schloss Dagstuhl, Germany 2005- 2004
[j4]Norbert Hofmann, Thomas Müller-Gronbach: On the global error of Itô-Taylor schemes for strong approximation of scalar stochastic differential equations. J. Complexity 20(5): 732-752 (2004)
[c3]Thomas Müller-Gronbach, Erich Novak, Knut Petras, Joseph F. Traub: 04401 Summary - Algorithms and Complexity for Continuous Problems. Algorithms and Complexity for Continuous Problems 2004
[c2]Thomas Müller-Gronbach, Erich Novak, Knut Petras, Joseph F. Traub: 04401 Abstracts Collection - Algorithms and Complexity for Continuous. Algorithms and Complexity for Continuous Problems 2004
[c1]Klaus Ritter, Thomas Müller-Gronbach: Lower Bounds and Non-Uniform Time Discretization for Approximation of Stochastic Heat Equations. Algorithms and Complexity for Continuous Problems 2004- 2002
[j3]Norbert Hofmann, Thomas Müller-Gronbach, Klaus Ritter: Linear vs Standard Information for Scalar Stochastic Differential Equations. J. Complexity 18(2): 394-414 (2002)- 2001
[j2]Norbert Hofmann, Thomas Müller-Gronbach, Klaus Ritter: The Optimal Discretization of Stochastic Differential Equations. J. Complexity 17(1): 117-153 (2001)- 2000
[j1]Norbert Hofmann, Thomas Müller-Gronbach, Klaus Ritter: Optimal approximation of stochastic differential equations by adaptive step-size control. Math. Comput. 69(231): 1017-1034 (2000)
Coauthor Index
data released under the ODC-BY 1.0 license. See also our legal information page
last updated on 2013-10-02 10:57 CEST by the dblp team



