Please note: This is a beta version of the new dblp website.
You can find the classic dblp view of this page here.
You can find the classic dblp view of this page here.
Nada Lavrac
2010 – today
- 2013
[j51]Laura Langohr, Vid Podpecan, Marko Petek, Igor Mozetic, Kristina Gruden, Nada Lavrac, Hannu Toivonen: Contrasting Subgroup Discovery. Comput. J. 56(3): 289-303 (2013)
[j50]Anze Vavpetic, Nada Lavrac: Semantic Subgroup Discovery Systems and Workflows in the SDM-Toolkit. Comput. J. 56(3): 304-320 (2013)
[j49]Miha Grcar, Nejc Trdin, Nada Lavrac: A Methodology for Mining Document-Enriched Heterogeneous Information Networks. Comput. J. 56(3): 321-335 (2013)
[c80]Matic Perovsek, Anze Vavpetic, Bojan Cestnik, Nada Lavrac: A Wordification Approach to Relational Data Mining. Discovery Science 2013: 141-154
[c79]Anze Vavpetic, Petra Kralj Novak, Miha Grcar, Igor Mozetic, Nada Lavrac: Semantic Data Mining of Financial News Articles. Discovery Science 2013: 294-307
[c78]Dragana Miljkovic, Vid Podpecan, Tjasa Stare, Igor Mozetic, Kristina Gruden, Nada Lavrac: Incremental revision of biological networks from texts. IWBBIO 2013: 1-9
[c77]Borut Sluban, Nada Lavrac: ViperCharts: Visual Performance Evaluation Platform. ECML/PKDD (3) 2013: 650-653
[c76]Jasmina Smailovic, Miha Grcar, Nada Lavrac, Martin Znidarsic: Predictive Sentiment Analysis of Tweets: A Stock Market Application. CHI-KDD 2013: 77-88
[c75]Matjaz Jursic, Bojan Cestnik, Tanja Urbancic, Nada Lavrac: HCI Empowered Literature Mining for Cross-Domain Knowledge Discovery. CHI-KDD 2013: 124-135- 2012
[b3]Johannes Fürnkranz, Dragan Gamberger, Nada Lavrac: Foundations of Rule Learning. Cognitive Technologies, Springer 2012, ISBN 978-3-540-75196-0, pp. 1-298
[j48]Ingrid Petric, Bojan Cestnik, Nada Lavrac, Tanja Urbancic: Outlier Detection in Cross-Context Link Discovery for Creative Literature Mining. Comput. J. 55(1): 47-61 (2012)
[j47]Vid Podpecan, Monika Zemenova, Nada Lavrac: Orange4WS Environment for Service-Oriented Data Mining. Comput. J. 55(1): 82-98 (2012)
[c74]Dragana Miljkovic, Matjaz Depolli, Igor Mozetic, Nada Lavrac, Tjasa Stare, Marko Petek, Kristina Gruden: Constraint-driven optimization of plant defense model parameters. BIBM Workshops 2012: 570-574
[c73]Matic Perovsek, Anze Vavpetic, Nada Lavrac: A Wordification Approach to Relational Data Mining: Early Results. ILP (Late Breaking Papers) 2012: 56-61
[c72]Borut Sluban, Senja Pollak, Roel Coesemans, Nada Lavrac: Irregularity Detection in Categorized Document Corpora. LREC 2012: 1598-1603
[c71]Janez Kranjc, Vid Podpecan, Nada Lavrac: ClowdFlows: A Cloud Based Scientific Workflow Platform. ECML/PKDD (2) 2012: 816-819
[c70]Anze Vavpetic, Vid Podpecan, Stijn Meganck, Nada Lavrac: Explaining Subgroups through Ontologies. PRICAI 2012: 625-636
[p10]Matjaz Jursic, Borut Sluban, Bojan Cestnik, Miha Grcar, Nada Lavrac: Bridging Concept Identification for Constructing Information Networks from Text Documents. Bisociative Knowledge Discovery 2012: 66-90
[p9]Ingrid Petric, Bojan Cestnik, Nada Lavrac, Tanja Urbancic: Bisociative Knowledge Discovery by Literature Outlier Detection. Bisociative Knowledge Discovery 2012: 313-324
[p8]Borut Sluban, Matjaz Jursic, Bojan Cestnik, Nada Lavrac: Exploring the Power of Outliers for Cross-Domain Literature Mining. Bisociative Knowledge Discovery 2012: 325-337
[p7]Matjaz Jursic, Bojan Cestnik, Tanja Urbancic, Nada Lavrac: Bisociative Literature Mining by Ensemble Heuristics. Bisociative Knowledge Discovery 2012: 338-358
[p6]Igor Mozetic, Nada Lavrac: Applications and Evaluation: Overview. Bisociative Knowledge Discovery 2012: 359-363
[p5]Igor Mozetic, Nada Lavrac, Vid Podpecan, Petra Kralj Novak, Helena Motaln, Marko Petek, Kristina Gruden, Hannu Toivonen, Kimmo Kulovesi: Semantic Subgroup Discovery and Cross-Context Linking for Microarray Data Analysis. Bisociative Knowledge Discovery 2012: 379-389
[p4]Dragana Miljkovic, Vid Podpecan, Miha Grcar, Kristina Gruden, Tjasa Stare, Marko Petek, Igor Mozetic, Nada Lavrac: Modelling a Biological System: Network Creation by Triplet Extraction from Biological Literature. Bisociative Knowledge Discovery 2012: 427-437- 2011
[j46]Vid Podpecan, Nada Lavrac, Igor Mozetic, Petra Kralj Novak, Igor Trajkovski, Laura Langohr, Kimmo Kulovesi, Hannu Toivonen, Marko Petek, Helena Motaln, Kristina Gruden: SegMine workflows for semantic microarray data analysis in Orange4WS. BMC Bioinformatics 12: 416 (2011)
[j45]Monika Záková, Petr Kremen, Filip Zelezný, Nada Lavrac: Automating Knowledge Discovery Workflow Composition Through Ontology-Based Planning. IEEE T. Automation Science and Engineering 8(2): 253-264 (2011)
[c69]Borut Sluban, Matjaz Jursic, Bojan Cestnik, Nada Lavrac: Evaluating Outliers for Cross-Context Link Discovery. AIME 2011: 343-347
[c68]Miha Grcar, Nada Lavrac: A Methodology for Mining Document-Enriched Heterogeneous Information Networks. Discovery Science 2011: 107-121
[c67]Nada Lavrac, Anze Vavpetic, Larisa N. Soldatova, Igor Trajkovski, Petra Kralj Novak: Using Ontologies in Semantic Data Mining with SEGS and g-SEGS. Discovery Science 2011: 165-178
[e8]Mor Peleg, Nada Lavrac, Carlo Combi (Eds.): Artificial Intelligence in Medicine - 13th Conference on Artificial Intelligence in Medicine, AIME 2011, Bled, Slovenia, July 2-6, 2011. Proceedings. Lecture Notes in Computer Science 6747, Springer 2011, ISBN 978-3-642-22217-7
[i1]Dragan Gamberger, Nada Lavrac: Expert-Guided Subgroup Discovery: Methodology and Application. CoRR abs/1106.4576 (2011)- 2010
[j44]Borut Sluban, Nada Lavrac: Supporting the search for cross-context links by outlier detection methods. BMC Bioinformatics 11(S-5): P2 (2010)
[j43]Matjaz Jursic, Igor Mozetic, Miha Grcar, Bojan Cestnik, Nada Lavrac: Identification of concepts bridging diverse biomedical domains. BMC Bioinformatics 11(S-5): P4 (2010)
[j42]Matjaz Jursic, Igor Mozetic, Tomaz Erjavec, Nada Lavrac: LemmaGen: Multilingual Lemmatisation with Induced Ripple-Down Rules. J. UCS 16(9): 1190-1214 (2010)
[c66]Miha Grcar, Vid Podpecan, Matjaz Jursic, Nada Lavrac: Efficient Visualization of Document Streams. Discovery Science 2010: 174-188
[c65]Borut Sluban, Dragan Gamberger, Nada Lavrac: Advances in Class Noise Detection. ECAI 2010: 1105-1106
[c64]Vid Podpecan, Monika Záková, Nada Lavrac: Workflow Construction for Service-Oriented Knowledge Discovery. ISoLA (1) 2010: 313-327
[c63]Vid Podpecan, Miha Grcar, Nada Lavrac: Semi-supervised Constrained Clustering: An Expert-Guided Data Analysis Methodology. PRICAI 2010: 219-230
[c62]Borut Sluban, Dragan Gamberger, Nada Lavrac: Performance Analysis of Class Noise Detection Algorithms. STAIRS 2010: 303-314
[p3]Nada Lavrac, Blaz Zupan: Data Mining in Medicine. Data Mining and Knowledge Discovery Handbook 2010: 1111-1136
[p2]Nada Lavrac, Johannes Fürnkranz, Dragan Gamberger: Explicit Feature Construction and Manipulation for Covering Rule Learning Algorithms. Advances in Machine Learning I 2010: 121-146
[r1]Petra Kralj Novak, Nada Lavrac, Geoffrey I. Webb: Supervised Descriptive Rule Induction. Encyclopedia of Machine Learning 2010: 938-941
2000 – 2009
- 2009
[j41]Petra Kralj Novak, Nada Lavrac, Dragan Gamberger, Antonija Krstacic: CSM-SD: Methodology for contrast set mining through subgroup discovery. Journal of Biomedical Informatics 42(1): 113-122 (2009)
[j40]Petra Kralj Novak, Nada Lavrac, Geoffrey I. Webb: Supervised Descriptive Rule Discovery: A Unifying Survey of Contrast Set, Emerging Pattern and Subgroup Mining. Journal of Machine Learning Research 10: 377-403 (2009)
[j39]Filip Zelezný, Nada Lavrac: Guest editors' introduction: Special issue on Inductive Logic Programming (ILP-2008). Machine Learning 76(1): 1-2 (2009)- 2008
[j38]Joël Plisson, Nada Lavrac, Dunja Mladenic, Tomaz Erjavec: Ripple Down Rule learning for automated word lemmatisation. AI Commun. 21(1): 15-26 (2008)
[j37]Igor Trajkovski, Nada Lavrac, Jakub Tolar: SEGS: Search for enriched gene sets in microarray data. Journal of Biomedical Informatics 41(4): 588-601 (2008)
[j36]Gemma C. Garriga, Petra Kralj, Nada Lavrac: Closed Sets for Labeled Data. Journal of Machine Learning Research 9: 559-580 (2008)
[j35]Igor Trajkovski, Filip Zelezný, Nada Lavrac, Jakub Tolar: Learning Relational Descriptions of Differentially Expressed Gene Groups. IEEE Transactions on Systems, Man, and Cybernetics, Part C 38(1): 16-25 (2008)
[c61]Jeroen S. de Bruin, Joost N. Kok, Nada Lavrac, Igor Trajkovski: On the Design of Knowledge Discovery Services Design Patterns and Their Application in a Use Case Implementation. ISoLA 2008: 649-662
[c60]Blaz Fortuna, Nada Lavrac, Paola Velardi: Advancing Topic Ontology Learning through Term Extraction. PRICAI 2008: 626-635
[c59]Dragan Gamberger, Nada Lavrac, Johannes Fürnkranz: Handling Unknown and Imprecise Attribute Values in Propositional Rule Learning: A Feature-Based Approach. PRICAI 2008: 636-645
[e7]Filip Zelezný, Nada Lavrac (Eds.): Inductive Logic Programming, 18th International Conference, ILP 2008, Prague, Czech Republic, September 10-12, 2008, Proceedings. Lecture Notes in Computer Science 5194, Springer 2008, ISBN 978-3-540-85927-7- 2007
[j34]Dragan Gamberger, Nada Lavrac, Antonija Krstacic, Goran Krstacic: Clinical data analysis based on iterative subgroup discovery: experiments in brain ischaemia data analysis. Appl. Intell. 27(3): 205-217 (2007)
[j33]Nada Lavrac, Marko Bohanec, Aleksander Pur, Bojan Cestnik, Marko Debeljak, Andrej Kobler: Data mining and visualization for decision support and modeling of public health-care resources. Journal of Biomedical Informatics 40(4): 438-447 (2007)
[j32]Nada Lavrac, Peter Ljubic, Tanja Urbani, Gregor Papa, Mitja Jermol, S. Bollhalter: Trust Modeling for Networked Organizations Using Reputation and Collaboration Estimates. IEEE Transactions on Systems, Man, and Cybernetics, Part C 37(3): 429-439 (2007)
[j31]Joël Plisson, Peter Ljubic, Igor Mozetic, Nada Lavrac: An Ontology for Virtual Organization Breeding Environments. IEEE Transactions on Systems, Man, and Cybernetics, Part C 37(6): 1327-1341 (2007)
[c58]Petra Kralj, Nada Lavrac, Dragan Gamberger, Antonija Krstacic: Contrast Set Mining for Distinguishing Between Similar Diseases. AIME 2007: 109-118
[c57]Igor Trajkovski, Nada Lavrac: Interpreting Gene Expression Data by Searching for Enriched Gene Sets. AIME 2007: 144-148
[c56]Dragan Gamberger, Nada Lavrac: Supporting Factors in Descriptive Analysis of Brain Ischaemia. AIME 2007: 155-159
[c55]Aleksander Pur, Marko Bohanec, Nada Lavrac, Bojan Cestnik, Marko Debeljak, Anton Gradisek: Monitoring Human Resources of a Public Health-Care System Through Intelligent Data Analysis and Visualization. AIME 2007: 175-179
[c54]Damjan Demsar, Igor Mozetic, Nada Lavrac: Collaboration Opportunity Finder. Virtual Enterprises and Collaborative Networks 2007: 179-186
[c53]Igor Trajkovski, Nada Lavrac: Efficient Generation of Biologically Relevant Enriched Gene Sets. ISBRA 2007: 248-259
[c52]Petra Kralj, Nada Lavrac, Dragan Gamberger, Antonija Krstacic: Contrast Set Mining Through Subgroup Discovery Applied to Brain Ischaemina Data. PAKDD 2007: 579-586
[e6]Michael R. Berthold, John Shawe-Taylor, Nada Lavrac (Eds.): Advances in Intelligent Data Analysis VII, 7th International Symposium on Intelligent Data Analysis, IDA 2007, Ljubljana, Slovenia, September 6-8, 2007, Proceedings. Lecture Notes in Computer Science 4723, Springer 2007, ISBN 978-3-540-74824-3- 2006
[j30]Branko Kavsek, Nada Lavrac: APRIORI-SD: Adapting Association Rule Learning to Subgroup Discovery. Applied Artificial Intelligence 20(7): 543-583 (2006)
[j29]Filip Zelezný, Nada Lavrac: Propositionalization-based relational subgroup discovery with RSD. Machine Learning 62(1-2): 33-63 (2006)
[c51]Igor Trajkovski, Filip Zelezný, Jakub Tolar, Nada Lavrac: Relational Subgroup Discovery for Descriptive Analysis of Microarray Data. CompLife 2006: 86-96
[c50]Monika Záková, Filip Zelezný, Javier A. García-Sedano, Cyril Masia Tissot, Nada Lavrac, Petr Kremen, Javier Molina: Relational Data Mining Applied to Virtual Engineering of Product Designs. ILP 2006: 439-453
[c49]
[c48]Igor Trajkovski, Filip Zelezný, Nada Lavrac, Jakub Tolar: Relational Descriptive Analysis of Gene Expression Data. STAIRS 2006: 184-195
[e5]Ljupco Todorovski, Nada Lavrac, Klaus P. Jantke (Eds.): Discovery Science, 9th International Conference, DS 2006, Barcelona, Spain, October 7-10, 2006, Proceedings. Lecture Notes in Computer Science 4265, Springer 2006, ISBN 3-540-46491-3- 2005
[c47]Nada Lavrac, Marko Bohanec, Aleksander Pur, Bojan Cestnik, Mitja Jermol, Tanja Urbancic, Marko Debeljak, Branko Kavsek, Tadeja Kopac: Resource Modeling and Analysis of Regional Public Health Care Data by Means of Knowledge Technologies. AIME 2005: 414-418
[c46]
[c45]Aleksander Pur, Marko Bohanec, Bojan Cestnik, Nada Lavrac, Marko Debeljak, Tadeja Kopac: Data Mining for Decision Support: An Application in Public Health Care. IEA/AIE 2005: 459-469
[c44]Nada Lavrac, Peter Ljubic, Mitja Jermol, Gregor Papa: A Decision Support Approach to Modeling Trust in Networked Organizations. IEA/AIE 2005: 746-748
[c43]
[p1]Nada Lavrac, Blaz Zupan: Data Mining in Medicine. The Data Mining and Knowledge Discovery Handbook 2005: 1107-1138- 2004
[j28]Dragan Gamberger, Nada Lavrac, Filip Zelezný, Jakub Tolar: Induction of comprehensible models for gene expression datasets by subgroup discovery methodology. Journal of Biomedical Informatics 37(4): 269-284 (2004)
[j27]Nada Lavrac, Branko Kavsek, Peter A. Flach, Ljupco Todorovski: Subgroup Discovery with CN2-SD. Journal of Machine Learning Research 5: 153-188 (2004)
[j26]Nada Lavrac, Hiroshi Motoda, Tom Fawcett: Editorial: Data Mining Lessons Learned. Machine Learning 57(1-2): 5-11 (2004)
[j25]Nada Lavrac, Hiroshi Motoda, Tom Fawcett, Robert Holte, Pat Langley, Pieter W. Adriaans: Introduction: Lessons Learned from Data Mining Applications and Collaborative Problem Solving. Machine Learning 57(1-2): 13-34 (2004)
[j24]Nada Lavrac, Bojan Cestnik, Dragan Gamberger, Peter A. Flach: Decision Support Through Subgroup Discovery: Three Case Studies and the Lessons Learned. Machine Learning 57(1-2): 115-143 (2004)
[c42]Nada Lavrac, Dragan Gamberger: Relevancy in Constraint-Based Subgroup Discovery. Constraint-Based Mining and Inductive Databases 2004: 243-266
[c41]Nada Lavrac, Filip Zelezný, Saso Dzeroski: Local Patterns: Theory and Practice of Constraint-Based Relational Subgroup Discovery. Local Pattern Detection 2004: 71-88
[c40]Dragan Gamberger, Nada Lavrac: Avoiding Data Overfitting in Scientific Discovery: Experiments in Functional Genomics. ECAI 2004: 470-474
[c39]Mitja Jermol, Nada Lavrac, Tanja Urbancic, Tadeja Kopac: Supporting a Public Health Care Virtual Organization by Knowledge Technologies. Virtual Enterprises and Collaborative Networks 2004: 567-576
[c38]Branko Kavsek, Nada Lavrac, Ljupco Todorovski: ROC Analysis of Example Weighting in Subgroup Discovery. ROCAI 2004: 55-60- 2003
[j23]Dragan Gamberger, Nada Lavrac: Active subgroup mining: a case study in coronary heart disease risk group detection. Artificial Intelligence in Medicine 28(1): 27-57 (2003)
[j22]Mitja Jermol, Nada Lavrac, Tanja Urbancic: Managing business intelligence in a virtual enterprise: A case study and knowledge management lessons learned. Journal of Intelligent and Fuzzy Systems 14(3): 121-136 (2003)
[c37]Dragan Gamberger, Nada Lavrac: Analysis of Gene Expression Data by the Logic Minimization Approach. AIME 2003: 244-248
[c36]Branko Kavsek, Nada Lavrac, Viktor Jovanoski: APRIORI-SD: Adapting Association Rule Learning to Subgroup Discovery. IDA 2003: 230-241
[c35]Mark-A. Krogel, Simon Rawles, Filip Zelezný, Peter A. Flach, Nada Lavrac, Stefan Wrobel: Comparative Evaluation of Approaches to Propositionalization. ILP 2003: 197-214
[e4]Nada Lavrac, Dragan Gamberger, Ljupco Todorovski, Hendrik Blockeel (Eds.): Machine Learning: ECML 2003, 14th European Conference on Machine Learning, Cavtat-Dubrovnik, Croatia, September 22-26, 2003, Proceedings. Lecture Notes in Computer Science 2837, Springer 2003, ISBN 3-540-20121-1
[e3]Nada Lavrac, Dragan Gamberger, Hendrik Blockeel, Ljupco Todorovski (Eds.): Knowledge Discovery in Databases: PKDD 2003, 7th European Conference on Principles and Practice of Knowledge Discovery in Databases, Cavtat-Dubrovnik, Croatia, September 22-26, 2003, Proceedings. Lecture Notes in Computer Science 2838, Springer 2003, ISBN 3-540-20085-1- 2002
[j21]Dragan Gamberger, Nada Lavrac: Expert-Guided Subgroup Discovery: Methodology and Application. J. Artif. Intell. Res. (JAIR) 17: 501-527 (2002)
[j20]Dragan Gamberger, Nada Lavrac, Goran Krstacic: Confirmation rule induction and its applications to coronary heart disease diagnosis and risk group discovery. Journal of Intelligent and Fuzzy Systems 12(1): 35-48 (2002)
[c34]Peter A. Flach, Nada Lavrac: Learning in Clausal Logic: A Perspective on Inductive Logic Programming. Computational Logic: Logic Programming and Beyond 2002: 437-471
[c33]Nada Lavrac, Peter A. Flach, Branko Kavsek, Ljupco Todorovski: Adapting classification rule induction to subgroup discovery. ICDM 2002: 266-273
[c32]Dragan Gamberger, Nada Lavrac: Descriptive Induction through Subgroup Discovery: A Case Study in a Medical Domain. ICML 2002: 163-170
[c31]
[c30]Nada Lavrac, Filip Zelezný, Peter A. Flach: RSD: Relational Subgroup Discovery through First-Order Feature Construction. ILP 2002: 149-165
[c29]Dragan Gamberger, Nada Lavrac: Generating Actionable Knowledge by Expert-Guided Subgroup Discovery. PKDD 2002: 163-174- 2001
[j19]Elpida T. Keravnou, Nada Lavrac: AIM portraits: tracing the evolution of artificial intelligence in medicine and predicting its future in the new millennium. Artificial Intelligence in Medicine 23(1): 1-4 (2001)
[j18]Nada Lavrac, Peter A. Flach: An extended transformation approach to inductive logic programming. ACM Trans. Comput. Log. 2(4): 458-494 (2001)
[c28]Branko Kavsek, Nada Lavrac, Anuska Ferligoj: Consensus Decision Trees: Using Consensus Hierarchical Clustering for Data Relabelling and Reduction. ECML 2001: 251-262
[c27]- 2000
[j17]Dragan Gamberger, Nada Lavrac, Saso Dzeroski: Noise Detection and Elimination in data Proprocessing: Experiments in Medical Domains. Applied Artificial Intelligence 14(2): 205-223 (2000)
[c26]Dragan Gamberger, Nada Lavrac, Goran Krstacic, Tomislav Smuc: Inconsistency Tests for Patient Records in a Coronary Heart Disease Database. ISMDA 2000: 183-189
[c25]
[c24]Ljupco Todorovski, Peter A. Flach, Nada Lavrac: Predictive Performance of Weghted Relative Accuracy. PKDD 2000: 255-264
1990 – 1999
- 1999
[j16]Nada Lavrac: Selected techniques for data mining in medicine. Artificial Intelligence in Medicine 16(1): 3-23 (1999)
[j15]
[j14]Nada Lavrac, Dragan Gamberger, Viktor Jovanoski: A Study of Relevance for Learning in Deductive Databases. J. Log. Program. 40(2-3): 215-249 (1999)
[j13]Nada Lavrac, Saso Dzeroski, Masayuki Numao: Inductive Logic Programming for Relational Knowledge Discovery. New Generation Comput. 17(1): 3-23 (1999)
[c23]
[c22]Dragan Gamberger, Nada Lavrac, Ciril Groselj: Diagnostic Rules of Increased Reliability for Critical Medical Applications. AIMDM 1999: 361-365
[c21]
[c20]Dragan Gamberger, Nada Lavrac, Ciril Groselj: Experiments with Noise Filtering in a Medical Domain. ICML 1999: 143-151
[c19]Nada Lavrac, Peter A. Flach, Blaz Zupan: Rule Evaluation Measures: A Unifying View. ILP 1999: 174-185- 1998
[j12]Nada Lavrac, Blaz Zupan, Igor Kononenko, Matjaz Kukar, Elpida T. Keravnou: Intelligent Data Analysis for Medical Diagnosis: Using Machine Learning and Temporal Abstraction. AI Commun. 11(3-4): 191-218 (1998)
[j11]Nada Lavrac, Dragan Gamberger, Peter D. Turney: A Relevancy Filter for Constructive Induction. IEEE Intelligent Systems 13(2): 50-56 (1998)
[c18]- 1997
[j10]Darko Zupanic, Milan Hodoscek, Nada Lavrac, Igor Mozetic: Global Energy Minimization of Small Molecules Combining Constraint Logic Programming and Molecular Mechanics. Journal of Chemical Information and Computer Sciences 37(6): 966-970 (1997)
[c17]Igor Zelic, Igor Kononenko, Nada Lavrac, Vanja Vuga: Machine Learning Applied to Diagnosis of Sport Injuries. AIME 1997: 138-141
[c16]Igor Zelic, Igor Kononenko, Nada Lavrac, Vanja Vuga: Diagnosis of sport injuries with machine learning: explanation of induced decisions. CBMS 1997: 195-199
[c15]Iztok A. Pilih, Dunja Mladenic, Nada Lavrac, Tine S. Prevec: Using machine learning for outcome prediction of patients with severe head injury. CBMS 1997: 200-204
[c14]Dragan Gamberger, Nada Lavrac: Conditions for Occam's Razor Applicability and Noise Elimination. ECML 1997: 108-123
[e2]Nada Lavrac, Saso Dzeroski (Eds.): Inductive Logic Programming, 7th International Workshop, ILP-97, Prague, Czech Republic, September 17-20, 1997, Proceedings. Lecture Notes in Computer Science 1297, Springer 1997, ISBN 3-540-63514-9- 1996
[j9]Nada Lavrac, Irene Weber, Darko Zupanic, Dimitar Kazakov, Olga Stepánková, Saso Dzeroski: ILPNET Repositories on WWW: Inductive Logic Programming Systems, Datasets and Bibliography. AI Commun. 9(4): 157-206 (1996)
[j8]Luc De Raedt, Nada Lavrac: Multiple Predicate Learning in Two Inductive Logic Programming Settings. Logic Journal of the IGPL 4(2): 227-254 (1996)
[j7]Nada Lavrac, Stefan Wrobel: Induktive Logikprogrammierung - Grundlagen und Techniken. KI 10(3): 46-54 (1996)
[j6]Nada Lavrac, Saso Dzeroski: A Reply to Pazzani's Book Review of "Inductive Logic Programming: Techniques and Applications". Machine Learning 23(1): 109-111 (1996)
[c13]Nada Lavrac, Dragan Gamberger, Peter D. Turney: Cost-Sensitive Feature Reduction Applied to a Hybrid Genetic Algorithm. ALT 1996: 127-134
[c12]Dragan Gamberger, Nada Lavrac, Saso Dzeroski: Noise Elimination in Inductive Concept Learning: A Case Study in Medical Diagnosois. ALT 1996: 199-212
[c11]Dragan Gamberger, Nada Lavrac: Noise Detection and Elimination Applied to Noise Handling in a KRK Chess Endgame. Inductive Logic Programming Workshop 1996: 72-88- 1995
[j5]Nada Lavrac, Luc De Raedt: Inductive Logic Programming: A Survey of European Research. AI Commun. 8(1): 3-19 (1995)
[e1]Nada Lavrac, Stefan Wrobel (Eds.): Machine Learning: ECML-95, 8th European Conference on Machine Learning, Heraclion, Crete, Greece, April 25-27, 1995, Proceedings. Lecture Notes in Computer Science 912, Springer 1995, ISBN 3-540-59286-5- 1994
[b2]Nada Lavrac, Saso Dzeroski: Inductive logic programming - techniques and applications. Ellis Horwood series in artificial intelligence, Ellis Horwood 1994, ISBN 978-0-13-457870-5, pp. I-XIX, 1-293
[j4]Nada Lavrac, Saso Dzeroski: Weakening the language bias in LINUS. J. Exp. Theor. Artif. Intell. 6(1): 95-119 (1994)
[c10]- 1993
[j3]Nada Lavrac, Saso Dzeroski, Vladimir Pirnat, Viljem Krizman: The utility of background knowledge in learning medical diagnostic rules. Applied Artificial Intelligence 7(3): 273-293 (1993)
[j2]Saso Dzeroski, Nada Lavrac: Inductive Learning in Deductive Databases. IEEE Trans. Knowl. Data Eng. 5(6): 939-949 (1993)
[c9]
[c8]- 1992
[c7]Nada Lavrac, Saso Dzeroski: Background Knowledge and Declarative Bias in Inductive Concept Learning. AII 1992: 51-71
[c6]Matevz Kovacic, Nada Lavrac, Marko Grobelnik, Darko Zupanic, Dunja Mladenic: Stochastic Search in Inductive Logic Programming. ECAI 1992: 444-445- 1991
[c5]Nada Lavrac, Saso Dzeroski, Marko Grobelnik: Learning Nonrecursive Definitions of Relations with LINUS. EWSL 1991: 265-281
[c4]Saso Dzeroski, Nada Lavrac: Learning Relations from Noisy Examples: An Empirical Comparison of LINUS and FOIL. ML 1991: 399-402
[c3]Nada Lavrac, Saso Dzeroski, Vladimir Pirnat, Viljem Krizman: Learning Rules for Early Diagnosis of Rheumatic Diseases. SCAI 1991: 138-149
1980 – 1989
- 1989
[b1]Ivan Bratko, Igor Mozetic, Nada Lavrac: KARDIO - a study in deep and qualitative knowledge for expert systems. MIT Press 1989, ISBN 978-0-262-02273-6, pp. I-XIV, 1-260
[j1]Nada Lavrac, Igor Mozetic: Methods for knowledge acquisition and refinement in second generation expert systems. SIGART Newsletter 108: 63-69 (1989)- 1987
[c2]Matjaz Gams, Nada Lavrac: Review of Five Empirical Learning Systems Within a Proposed Schemata. EWSL 1987: 46-66- 1986
[c1]Ryszard S. Michalski, Igor Mozetic, Jiarong Hong, Nada Lavrac: The Multi-Purpose Incremental Learning System AQ15 and Its Testing Application to Three Medical Domains. AAAI 1986: 1041-1047
Coauthor Index
data released under the ODC-BY 1.0 license. See also our legal information page
last updated on 2013-10-02 11:01 CEST by the dblp team



