Please note: This is a beta version of the new dblp website.
You can find the classic dblp view of this page here.
You can find the classic dblp view of this page here.
Kristian Kersting
2010 – today
- 2013
[j23]Hendrik Blockeel, Kristian Kersting, Siegfried Nijssen, Filip Zelezný: Guest editor's introduction: special issue of the ECML PKDD 2013 journal track. Data Min. Knowl. Discov. 27(3): 291-293 (2013)
[j22]Christian Bauckhage, Kristian Kersting: Can Computers Learn from the Aesthetic Wisdom of the Crowd? KI 27(1): 25-35 (2013)
[j21]Babak Ahmadi, Kristian Kersting, Martin Mladenov, Sriraam Natarajan: Exploiting symmetries for scaling loopy belief propagation and relational training. Machine Learning 92(1): 91-132 (2013)
[j20]Hendrik Blockeel, Kristian Kersting, Siegfried Nijssen, Filip Zelezný: Guest editor's introduction: special issue of the ECML PKDD 2013 journal track. Machine Learning 93(1): 1-3 (2013)
[c85]Fabian Hadiji, Kristian Kersting: Reduce and Re-Lift: Bootstrapped Lifted Likelihood Maximization for MAP. AAAI 2013
[c84]Sriraam Natarajan, Kristian Kersting, Edward Ip, David R. Jacobs, Jeffrey Carr: Early Prediction of Coronary Artery Calcification Levels Using Machine Learning. IAAI 2013
[c83]Christian Bauckhage, Kristian Kersting, Fabian Hadiji: Mathematical Models of Fads Explain the Temporal Dynamics of Internet Memes. ICWSM 2013
[e7]Hendrik Blockeel, Kristian Kersting, Siegfried Nijssen, Filip Zelezný (Eds.): Machine Learning and Knowledge Discovery in Databases - European Conference, ECML PKDD 2013, Prague, Czech Republic, September 23-27, 2013, Proceedings, Part I. Lecture Notes in Computer Science 8188, Springer 2013, ISBN 978-3-642-40987-5
[e6]Hendrik Blockeel, Kristian Kersting, Siegfried Nijssen, Filip Zelezný (Eds.): Machine Learning and Knowledge Discovery in Databases - European Conference, ECML PKDD 2013, Prague, Czech Republic, September 23-27, 2013, Proceedings, Part II. Lecture Notes in Computer Science 8189, Springer 2013, ISBN 978-3-642-40990-5
[e5]Hendrik Blockeel, Kristian Kersting, Siegfried Nijssen, Filip Zelezný (Eds.): Machine Learning and Knowledge Discovery in Databases - European Conference, ECML PKDD 2013, Prague, Czech Republic, September 23-27, 2013, Proceedings, Part III. Lecture Notes in Computer Science 8190, Springer 2013, ISBN 978-3-642-40993-6
[i8]Fabian Hadiji, Kristian Kersting, Christian Bauckhage, Babak Ahmadi: GeoDBLP: Geo-Tagging DBLP for Mining the Sociology of Computer Science. CoRR abs/1304.7984 (2013)
[i7]Martin Grohe, Kristian Kersting, Martin Mladenov, Erkal Selman: Dimension Reduction via Colour Refinement. CoRR abs/1307.5697 (2013)- 2012
[j19]Christian Thurau, Kristian Kersting, Mirwaes Wahabzada, Christian Bauckhage: Descriptive matrix factorization for sustainability Adopting the principle of opposites. Data Min. Knowl. Discov. 24(2): 325-354 (2012)
[j18]Martin Mladenov, Babak Ahmadi, Kristian Kersting: Lifted Linear Programming. Journal of Machine Learning Research - Proceedings Track 22: 788-797 (2012)
[j17]Martin Schiegg, Marion Neumann, Kristian Kersting: Markov Logic Mixtures of Gaussian Processes: Towards Machines Reading Regression Data. Journal of Machine Learning Research - Proceedings Track 22: 1002-1011 (2012)
[j16]Sriraam Natarajan, Tushar Khot, Kristian Kersting, Bernd Gutmann, Jude W. Shavlik: Gradient-based boosting for statistical relational learning: The relational dependency network case. Machine Learning 86(1): 25-56 (2012)
[j15]Christian Bauckhage, Kristian Kersting, Albrecht Schmidt: Agriculture's Technological Makeover. IEEE Pervasive Computing 11(2): 4-7 (2012)
[c82]Kristian Kersting, Zhao Xu, Mirwaes Wahabzada, Christian Bauckhage, Christian Thurau, Christoph Römer, Agim Ballvora, Uwe Rascher, Jens Leon, Lutz Plümer: Pre-Symptomatic Prediction of Plant Drought Stress Using Dirichlet-Aggregation Regression on Hyperspectral Images. AAAI 2012
[c81]Christian Bauckhage, Kristian Kersting, Rafet Sifa, Christian Thurau, Anders Drachen, Alessandro Canossa: How players lose interest in playing a game: An empirical study based on distributions of total playing times. CIG 2012: 139-146
[c80]
[c79]Zhao Xu, Kristian Kersting, Christian Bauckhage: Efficient Learning for Hashing Proportional Data. ICDM 2012: 735-744
[c78]Sriraam Natarajan, Saket Joshi, Baidya Nath Saha, Adam Edwards, Tushar Khot, Elizabeth Moody, Kristian Kersting, Christopher T. Whitlow, Joseph A. Maldjian: A Machine Learning Pipeline for Three-Way Classification of Alzheimer Patients from Structural Magnetic Resonance Images of the Brain. ICMLA (1) 2012: 203-208
[c77]Daan Fierens, Kristian Kersting, Jesse Davis, Jian Chen, Martin Mladenov: Pairwise Markov Logic. ILP 2012: 58-73
[c76]Zahra Zamani, Scott Sanner, Pascal Poupart, Kristian Kersting: Symbolic Dynamic Programming for Continuous State and Observation POMDPs. NIPS 2012: 1403-1411
[c75]Marion Neumann, Novi Patricia, Roman Garnett, Kristian Kersting: Efficient Graph Kernels by Randomization. ECML/PKDD (1) 2012: 378-393
[c74]Babak Ahmadi, Kristian Kersting, Sriraam Natarajan: Lifted Online Training of Relational Models with Stochastic Gradient Methods. ECML/PKDD (1) 2012: 585-600
[c73]Kristian Kersting, Christian Bauckhage, Christian Thurau, Mirwaes Wahabzada: Matrix Factorization as Search. ECML/PKDD (2) 2012: 850-853
[c72]Kristian Kersting, Mirwaes Wahabzada, Christoph Römer, Christian Thurau, Agim Ballvora, Uwe Rascher, Jens Leon, Christian Bauckhage, Lutz Plümer: Simplex Distributions for Embedding Data Matrices over Time. SDM 2012: 295-306
[c71]Christian Thurau, Kristian Kersting, Christian Bauckhage: Deterministic CUR for Improved Large-Scale Data Analysis: An Empirical Study. SDM 2012: 684-695
[c70]Mirwaes Wahabzada, Kristian Kersting, Christian Bauckhage, Christoph Römer, Agim Ballvora, Francisco Pinto, Uwe Rascher, Jens Leon, Lutz Ploemer: Latent Dirichlet Allocation Uncovers Spectral Characteristics of Drought Stressed Plants. UAI 2012: 852-862
[e4]Kristian Kersting, Marc Toussaint (Eds.): STAIRS 2012 - Proceedings of the Sixth Starting AI Researchers' Symposium, Montpellier, France, 27-28 August 2012. Frontiers in Artificial Intelligence and Applications 241, IOS Press 2012, ISBN 978-1-61499-095-6
[i6]Kristian Kersting, Babak Ahmadi, Sriraam Natarajan: Counting Belief Propagation. CoRR abs/1205.2637 (2012)
[i5]Kristian Kersting, Tapani Raiko: 'Say EM' for Selecting Probabilistic Models for Logical Sequences. CoRR abs/1207.1353 (2012)
[i4]Hendrik Blockeel, Kristian Kersting, Siegfried Nijssen, Filip Zelezný: A Revised Publication Model for ECML PKDD. CoRR abs/1207.6324 (2012)
[i3]Mirwaes Wahabzada, Kristian Kersting, Christian Bauckhage, Christoph Römer, Agim Ballvora, Francisco Pinto, Uwe Rascher, Jens Leon, Lutz Ploemer: Latent Dirichlet Allocation Uncovers Spectral Characteristics of Drought Stressed Plants. CoRR abs/1210.4919 (2012)- 2011
[j14]Saket Joshi, Kristian Kersting, Roni Khardon: Decision-theoretic planning with generalized first-order decision diagrams. Artif. Intell. 175(18): 2198-2222 (2011)
[j13]Albrecht Schmidt, Marc Langheinrich, Kristian Kersting: Perception beyond the Here and Now. IEEE Computer 44(2): 86-88 (2011)
[j12]Christian Thurau, Kristian Kersting, Mirwaes Wahabzada, Christian Bauckhage: Convex non-negative matrix factorization for massive datasets. Knowl. Inf. Syst. 29(2): 457-478 (2011)
[j11]Hendrik Blockeel, Karsten M. Borgwardt, Luc De Raedt, Pedro Domingos, Kristian Kersting, Xifeng Yan: Guest editorial to the special issue on inductive logic programming, mining and learning in graphs and statistical relational learning. Machine Learning 83(2): 133-135 (2011)
[c69]Marion Neumann, Babak Ahmadi, Kristian Kersting: Markov Logic Sets: Towards Lifted Information Retrieval Using PageRank and Label Propagation. AAAI 2011
[c68]Mirwaes Wahabzada, Kristian Kersting, Anja Pilz, Christian Bauckhage: More influence means less work: fast latent dirichlet allocation by influence scheduling. CIKM 2011: 2273-2276
[c67]Kristian Kersting: Invited Talk: Increasing Representational Power and Scaling Inference in Reinforcement Learning. EWRL 2011: 2
[c66]Ahmed Jawad, Kristian Kersting, Natalia V. Andrienko: Where traffic meets DNA: mobility mining using biological sequence analysis revisited. GIS 2011: 357-360
[c65]Tushar Khot, Sriraam Natarajan, Kristian Kersting, Jude W. Shavlik: Learning Markov Logic Networks via Functional Gradient Boosting. ICDM 2011: 320-329
[c64]
[c63]Babak Ahmadi, Kristian Kersting, Scott Sanner: Multi-Evidence Lifted Message Passing, with Application to PageRank and the Kalman Filter. IJCAI 2011: 1152-1158
[c62]Sriraam Natarajan, Saket Joshi, Prasad Tadepalli, Kristian Kersting, Jude W. Shavlik: Imitation Learning in Relational Domains: A Functional-Gradient Boosting Approach. IJCAI 2011: 1414-1420
[c61]Fabian Hadiji, Babak Ahmadi, Kristian Kersting: Efficient Sequential Clamping for Lifted Message Passing. KI 2011: 122-133
[c60]Mirwaes Wahabzada, Kristian Kersting: Larger Residuals, Less Work: Active Document Scheduling for Latent Dirichlet Allocation. ECML/PKDD (3) 2011: 475-490
[i2]Luc De Raedt, Kristian Kersting, Tapani Raiko: Logical Hidden Markov Models. CoRR abs/1109.2148 (2011)- 2010
[j10]David W. Aha, Mark S. Boddy, Vadim Bulitko, Artur S. d'Avila Garcez, Prashant Doshi, Stefan Edelkamp, Christopher W. Geib, Piotr J. Gmytrasiewicz, Robert P. Goldman, Pascal Hitzler, Charles L. Isbell, Darsana P. Josyula, Leslie Pack Kaelbling, Kristian Kersting, Maithilee Kunda, Luís C. Lamb, Bhaskara Marthi, Keith McGreggor, Vivi Nastase, Gregory Provan, Anita Raja, Ashwin Ram, Mark O. Riedl, Stuart J. Russell, Ashish Sabharwal, Jan-Georg Smaus, Gita Sukthankar, Karl Tuyls, Ron van der Meyden, Alon Y. Halevy, Lilyana Mihalkova, Sriraam Natarajan: Reports of the AAAI 2010 Conference Workshops. AI Magazine 31(4): 95-108 (2010)
[j9]Kristian Kersting, Mirwaes Wahabzada, Christian Thurau, Christian Bauckhage: Hierarchical Convex NMF for Clustering Massive Data. Journal of Machine Learning Research - Proceedings Track 13: 253-268 (2010)
[c59]Fabian Hadiji, Kristian Kersting, Babak Ahmadi: Lifted Message Passing for Satisfiability. Statistical Relational Artificial Intelligence 2010
[c58]Kristian Kersting, Youssef El Massaoudi, Fabian Hadiji, Babak Ahmadi: Informed Lifting for Message-Passing. AAAI 2010
[c57]Sriraam Natarajan, Tushar Khot, Daniel Lowd, Prasad Tadepalli, Kristian Kersting, Jude W. Shavlik: Exploiting Causal Independence in Markov Logic Networks: Combining Undirected and Directed Models. Statistical Relational Artificial Intelligence 2010
[c56]
[c55]Saket Joshi, Kristian Kersting, Roni Khardon: Self-Taught Decision Theoretic Planning with First Order Decision Diagrams. ICAPS 2010: 89-96
[c54]Christian Thurau, Kristian Kersting, Christian Bauckhage: Yes we can: simplex volume maximization for descriptive web-scale matrix factorization. CIKM 2010: 1785-1788
[c53]
[c52]Sriraam Natarajan, Gautam Kunapuli, Kshitij Judah, Prasad Tadepalli, Kristian Kersting, Jude W. Shavlik: Multi-Agent Inverse Reinforcement Learning. ICMLA 2010: 395-400
[c51]Jens Behley, Kristian Kersting, Dirk Schulz, Volker Steinhage, Armin B. Cremers: Learning to hash logistic regression for fast 3D scan point classification. IROS 2010: 5960-5965
[c50]Novi Quadrianto, Kristian Kersting, Tinne Tuytelaars, Wray L. Buntine: Beyond 2D-grids: a dependence maximization view on image browsing. Multimedia Information Retrieval 2010: 339-348
[c49]Tobias Lang, Marc Toussaint, Kristian Kersting: Exploration in Relational Worlds. ECML/PKDD (2) 2010: 178-194
[c48]Mirwaes Wahabzada, Zhao Xu, Kristian Kersting: Topic Models Conditioned on Relations. ECML/PKDD (3) 2010: 402-417
[c47]Sriraam Natarajan, Tushar Khot, Daniel Lowd, Prasad Tadepalli, Kristian Kersting, Jude W. Shavlik: Exploiting Causal Independence in Markov Logic Networks: Combining Undirected and Directed Models. ECML/PKDD (2) 2010: 434-450
[c46]Zhao Xu, Kristian Kersting, Thorsten Joachims: Fast Active Exploration for Link-Based Preference Learning Using Gaussian Processes. ECML/PKDD (3) 2010: 499-514
[r3]Novi Quadrianto, Kristian Kersting, Zhao Xu: Gaussian Process. Encyclopedia of Machine Learning 2010: 428-439
[r2]Luc De Raedt, Kristian Kersting: Statistical Relational Learning. Encyclopedia of Machine Learning 2010: 916-924
[r1]Scott Sanner, Kristian Kersting: Symbolic Dynamic Programming. Encyclopedia of Machine Learning 2010: 946-954
2000 – 2009
- 2009
[j8]Christian Plagemann, Sebastian Mischke, Sam Prentice, Kristian Kersting, Nicholas Roy, Wolfram Burgard: A Bayesian regression approach to terrain mapping and an application to legged robot locomotion. J. Field Robotics 26(10): 789-811 (2009)
[c45]Marion Neumann, Kristian Kersting, Zhao Xu, Daniel Schulz: Stacked Gaussian Process Learning. ICDM 2009: 387-396
[c44]Christian Thurau, Kristian Kersting, Christian Bauckhage: Convex Non-negative Matrix Factorization in the Wild. ICDM 2009: 523-532
[c43]Novi Quadrianto, Kristian Kersting, Mark D. Reid, Tibério S. Caetano, Wray L. Buntine: Kernel Conditional Quantile Estimation via Reduction Revisited. ICDM 2009: 938-943
[c42]Zhao Xu, Kristian Kersting, Volker Tresp: Multi-Relational Learning with Gaussian Processes. IJCAI 2009: 1309-1314
[c41]Saket Joshi, Kristian Kersting, Roni Khardon: Generalized First Order Decision Diagrams for First Order Markov Decision Processes. IJCAI 2009: 1916-1921
[c40]Hannes Schulz, Kristian Kersting, Andreas Karwath: ILP, the Blind, and the Elephant: Euclidean Embedding of Co-proven Queries. ILP 2009: 209-216
[c39]Kristian Kersting, Zhao Xu: Learning Preferences with Hidden Common Cause Relations. ECML/PKDD (1) 2009: 676-691
[c38]- 2008
[j7]Manfred Jaeger, Lise Getoor, Kristian Kersting: Preface. Ann. Math. Artif. Intell. 54(1-3): 1-2 (2008)
[j6]Luc De Raedt, Kristian Kersting, Angelika Kimmig, Kate Revoredo, Hannu Toivonen: Compressing probabilistic Prolog programs. Machine Learning 70(2-3): 151-168 (2008)
[c37]Brian Milch, Luke S. Zettlemoyer, Kristian Kersting, Michael Haimes, Leslie Pack Kaelbling: Lifted Probabilistic Inference with Counting Formulas. AAAI 2008: 1062-1068
[c36]Andreas Karwath, Kristian Kersting, Niels Landwehr: Boosting Relational Sequence Alignments. ICDM 2008: 857-862
[c35]Kristian Kersting, Kurt Driessens: Non-parametric policy gradients: a unified treatment of propositional and relational domains. ICML 2008: 456-463
[c34]Luc De Raedt, Kristian Kersting: Probabilistic Inductive Logic Programming. Probabilistic Inductive Logic Programming 2008: 1-27
[c33]
[c32]Kristian Kersting, Luc De Raedt, Bernd Gutmann, Andreas Karwath, Niels Landwehr: Relational Sequence Learning. Probabilistic Inductive Logic Programming 2008: 28-55
[c31]Kristian Kersting, Luc De Raedt: Basic Principles of Learning Bayesian Logic Programs. Probabilistic Inductive Logic Programming 2008: 189-221
[c30]Sriraam Natarajan, Hung Hai Bui, Prasad Tadepalli, Kristian Kersting, Weng-Keen Wong: Logical Hierarchical Hidden Markov Models for Modeling User Activities. ILP 2008: 192-209
[c29]Christian Plagemann, Sebastian Mischke, Sam Prentice, Kristian Kersting, Nicholas Roy, Wolfram Burgard: Learning predictive terrain models for legged robot locomotion. IROS 2008: 3545-3552
[c28]Zhao Xu, Volker Tresp, Achim Rettinger, Kristian Kersting: Social Network Mining with Nonparametric Relational Models. SNAKDD 2008: 77-96
[c27]
[c26]Christian Plagemann, Kristian Kersting, Wolfram Burgard: Nonstationary Gaussian Process Regression Using Point Estimates of Local Smoothness. ECML/PKDD (2) 2008: 204-219
[c25]Bernd Gutmann, Angelika Kimmig, Kristian Kersting, Luc De Raedt: Parameter Learning in Probabilistic Databases: A Least Squares Approach. ECML/PKDD (1) 2008: 473-488
[e3]Luc De Raedt, Thomas G. Dietterich, Lise Getoor, Kristian Kersting, Stephen Muggleton (Eds.): Probabilistic, Logical and Relational Learning - A Further Synthesis, 15.04. - 20.04.2007. Dagstuhl Seminar Proceedings 07161, Internationales Begegnungs- und Forschungszentrum fuer Informatik (IBFI), Schloss Dagstuhl, Germany 2008
[e2]Luc De Raedt, Paolo Frasconi, Kristian Kersting, Stephen Muggleton (Eds.): Probabilistic Inductive Logic Programming - Theory and Applications. Lecture Notes in Computer Science 4911, Springer 2008, ISBN 978-3-540-78651-1- 2007
[j5]Niels Landwehr, Kristian Kersting, Luc De Raedt: Integrating Naïve Bayes and FOIL. Journal of Machine Learning Research 8: 481-507 (2007)
[c24]Luc De Raedt, Thomas G. Dietterich, Lise Getoor, Kristian Kersting, Stephen Muggleton: 07161 Abstracts Collection -- Probabilistic, Logical and Relational Learning - A Further Synthesis. Probabilistic, Logical and Relational Learning - A Further Synthesis 2007
[c23]Kristian Kersting, Christian Plagemann, Patrick Pfaff, Wolfram Burgard: Most likely heteroscedastic Gaussian process regression. ICML 2007: 393-400
[c22]Christian Plagemann, Kristian Kersting, Patrick Pfaff, Wolfram Burgard: Gaussian Beam Processes: A Nonparametric Bayesian Measurement Model for Range Finders. Robotics: Science and Systems 2007
[e1]Paolo Frasconi, Kristian Kersting, Koji Tsuda (Eds.): Mining and Learning with Graphs, MLG 2007, Firence, Italy, August 1-3, 2007, Proceedings. 2007- 2006
[b2]Kristian Kersting: An inductive logic programming approach to statistical relational learning. University of Freiburg 2006, ISBN 1-58603-674-2, pp. 1-228
[j4]Kristian Kersting: An inductive logic programming approach to statistical relational learning. AI Commun. 19(4): 389-390 (2006)
[j3]Kristian Kersting, Luc De Raedt, Tapani Raiko: Logical Hidden Markov Models. J. Artif. Intell. Res. (JAIR) 25: 425-456 (2006)
[c21]
[c20]Bernd Gutmann, Kristian Kersting: TildeCRF: Conditional Random Fields for Logical Sequences. ECML 2006: 174-185
[c19]Rudolph Triebel, Kristian Kersting, Wolfram Burgard: Robust 3D Scan Point Classification using Associative Markov Networks. ICRA 2006: 2603-2608
[c18]Luc De Raedt, Kristian Kersting, Angelika Kimmig, Kate Revoredo, Hannu Toivonen: Revising Probabilistic Prolog Programs. ILP 2006: 30-33
[c17]
[c16]Alexandru Cocora, Kristian Kersting, Christian Plagemann, Wolfram Burgard, Luc De Raedt: Learning Relational Navigation Policies. IROS 2006: 2792-2797- 2005
[b1]Kristian Kersting: An Inductive Logic Programming Approach to Statistical Relational Learning. Frontiers in Artificial Intelligence and Applications 148, IOS Press 2005, ISBN 978-1-58603-674-4, pp. 1-228
[c15]Luc De Raedt, Kristian Kersting, Sunna Torge: Towards Learning Stochastic Logic Programs from Proof-Banks. AAAI 2005: 752-757
[c14]Niels Landwehr, Kristian Kersting, Luc De Raedt: nFOIL: Integrating Naïve Bayes and FOIL. AAAI 2005: 795-800
[c13]Kristian Kersting, Tapani Raiko: "Say EM" for Selecting Probabilistic Models for Logical Sequences. UAI 2005: 300-307- 2004
[c12]
[c11]
[c10]
[c9]Kristian Kersting, Luc De Raedt: Logical Markov Decision Programs and the Convergence of Logical TD(lambda). ILP 2004: 180-197
[c8]- 2003
[j2]Luc De Raedt, Kristian Kersting: Probabilistic logic learning. SIGKDD Explorations 5(1): 31-48 (2003)
[c7]
[c6]Kristian Kersting, Tapani Raiko, Stefan Kramer, Luc De Raedt: Towards Discovering Structural Signatures of Protein Folds Based on Logical Hidden Markov Models. Pacific Symposium on Biocomputing 2003: 192-203- 2002
[j1]Steven Ganzert, Josef Guttmann, Kristian Kersting, Ralf Kuhlen, Christian Putensen, Michael Sydow, Stefan Kramer: Analysis of respiratory pressure-volume curves in intensive care medicine using inductive machine learning. Artificial Intelligence in Medicine 26(1-2): 69-86 (2002)
[c5]Kristian Kersting, Niels Landwehr: Scaled Conjugate Gradients for Maximum Likelihood: An Empirical Comparison with the EM Algorithm. Probabilistic Graphical Models 2002
[c4]Kristian Kersting, Tapani Raiko, Luc De Raedt: Logical Hidden Markov Models (Extendes abstract). Probabilistic Graphical Models 2002- 2001
[c3]
[c2]Kristian Kersting, Luc De Raedt: Towards Combining Inductive Logic Programming with Bayesian Networks. ILP 2001: 118-131
[i1]- 2000
[c1]
Coauthor Index
data released under the ODC-BY 1.0 license. See also our legal information page
last updated on 2013-10-02 11:00 CEST by the dblp team



