Please note: This is a beta version of the new dblp website.
You can find the classic dblp view of this page here.
You can find the classic dblp view of this page here.
Tomás Horváth
2010 – today
- 2013
[c18]Stefan Pero, Tomás Horváth: Opinion-Driven Matrix Factorization for Rating Prediction. UMAP 2013: 1-13- 2012
[j4]Krisztian Buza, Alexandros Nanopoulos, Tomás Horváth, Lars Schmidt-Thieme: GRAMOFON: General model-selection framework based on networks. Neurocomputing 75(1): 163-170 (2012)
[c17]Lenka Pisková, Stefan Pero, Tomás Horváth, Stanislav Krajci: Mining Concepts from Incomplete Datasets Utilizing Matrix Factorization. CLA 2012: 33-44
[c16]Ruth Janning, Tomás Horváth, Andre Busche, Lars Schmidt-Thieme: GamRec: A Clustering Method Using Geometrical Background Knowledge for GPR Data Preprocessing. AIAI (1) 2012: 347-356
[c15]Lucas Drumond, Nguyen Thai-Nghe, Tomás Horváth, Lars Schmidt-Thieme: Factorization techniques for student performance classification and ranking. UMAP Workshops 2012
[c14]Nguyen Thai-Nghe, Lucas Drumond, Tomás Horváth, Lars Schmidt-Thieme: Using factorization machines for student modeling. UMAP Workshops 2012
[e1]Tomás Horváth (Ed.): Proceedings of the Conference on Theory and Practice of Information Technologies, Belianske Tatry, Slovak Republic, September 17-21, 2012. CEUR Workshop Proceedings 990, CEUR-WS.org 2012- 2011
[c13]Nguyen Thai-Nghe, Lucas Drumond, Tomás Horváth, Alexandros Nanopoulos, Lars Schmidt-Thieme: Matrix and Tensor Factorization for Predicting Student Performance. CSEDU (1) 2011: 69-78
[c12]Nguyen Thai-Nghe, Tomás Horváth, Lars Schmidt-Thieme: Factorization Models for Forecasting Student Performance. EDM 2011: 11-20
[c11]Nguyen Thai-Nghe, Tomás Horváth, Lars Schmidt-Thieme: Personalized Forecasting Student Performance. ICALT 2011: 412-414
2000 – 2009
- 2009
[j3]Tomás Horváth: A Model of User Preference Learning for Content-Based Recommender Systems. Computing and Informatics 28(4): 453-481 (2009)
[j2]Peter Gurský, Tomás Horváth, Peter Vojtás, Jozef Jirásek, Stanislav Krajci, Robert Novotny, Jana Pribolová, Veronika Vaneková: User Preference Web Search -- Experiments with a System Connecting Web and User. Computing and Informatics 28(4): 515-553 (2009)- 2008
[j1]Peter Gurský, Tomás Horváth, Jozef Jirásek, Robert Novotny, Jana Pribolová, Veronika Vaneková, Peter Vojtás: Knowledge Processing for Web Search - An Integrated Model and Experiments. Scalable Computing: Practice and Experience 9(1) (2008)
[c10]Alan Eckhardt, Tomás Horváth, Dusan Maruscák, Robert Novotny, Peter Vojtás: Uncertainty Issues and Algorithms in Automating Process Connecting Web and User. URSW (LNCS Vol.) 2008: 207-223- 2007
[c9]Peter Gurský, Tomás Horváth, Jozef Jirásek, Stanislav Krajci, Robert Novotny, Veronika Vaneková, Peter Vojtás: Knowledge Processing for Web Search - An Integrated Model. IDC 2007: 96-104
[c8]Alan Eckhardt, Tomás Horváth, Dusan Maruscák, Robert Novotny, Peter Vojtás: Uncertainty Issues in Automating Process Connecting Web and User. URSW 2007
[c7]Alan Eckhardt, Tomás Horváth, Peter Vojtás: Learning Different User Profile Annotated Rules for Fuzzy Preference Top-k Querying. SUM 2007: 116-130
[c6]Alan Eckhardt, Tomás Horváth, Peter Vojtás: PHASES: A User Profile Learning Approach for Web Search. Web Intelligence 2007: 780-783- 2006
[c5]
[c4]Tomás Horváth, Peter Vojtás: Ordinal Classification with Monotonicity Constraints. Industrial Conference on Data Mining 2006: 217-225
[c3]Peter Gurský, Tomás Horváth, Robert Novotny, Veronika Vaneková, Peter Vojtás: UPRE: User Preference Based Search System. Web Intelligence 2006: 841-844- 2004
[c2]Tomás Horváth, Peter Vojtás: Fuzzy Induction via Generalized Annotated Programs. Fuzzy Days 2004: 419-433
[c1]Tomás Horváth, Frantisek Sudzina, Peter Vojtás: Mining Rules from Monotone Classification Measuring Impact of Information Systems on Business Competitiveness. BASYS 2004: 451-458
Coauthor Index
data released under the ODC-BY 1.0 license. See also our legal information page
last updated on 2013-10-02 11:05 CEST by the dblp team



