Please note: This is a beta version of the new dblp website.
You can find the classic dblp view of this page here.
You can find the classic dblp view of this page here.
Holger H. Hoos
Holger Hoos
2010 – today
- 2013
[j25]Nima Aghaeepour, Holger H. Hoos: Ensemble-based prediction of RNA secondary structures. BMC Bioinformatics 14: 139 (2013)
[c64]James Styles, Holger Hoos: Ordered racing protocols for automatically configuring algorithms for scaling performance. GECCO 2013: 551-558
[c63]Frank Hutter, Holger Hoos, Kevin Leyton-Brown: An evaluation of sequential model-based optimization for expensive blackbox functions. GECCO (Companion) 2013: 1209-1216
[c62]Chris Thornton, Frank Hutter, Holger H. Hoos, Kevin Leyton-Brown: Auto-WEKA: combined selection and hyperparameter optimization of classification algorithms. KDD 2013: 847-855
[c61]Mauro Vallati, Chris Fawcett, Alfonso Gerevini, Holger H. Hoos, Alessandro Saetti: Automatic Generation of Efficient Domain-Optimized Planners from Generic Parametrized Planners. SOCS 2013
[i8]Craig Boutilier, Ronen I. Brafman, Holger H. Hoos, David Poole: Reasoning With Conditional Ceteris Paribus Preference Statem. CoRR abs/1301.6681 (2013)
[i7]Holger H. Hoos, Thomas Stützle: Evaluating Las Vegas Algorithms - Pitfalls and Remedies. CoRR abs/1301.7383 (2013)- 2012
[j24]Nima Aghaeepour, Pratip K. Chattopadhyay, Anuradha Ganesan, Kieran O'Neill, Habil Zare, Adrin Jalali, Holger H. Hoos, Mario Roederer, Ryan R. Brinkman: Early immunologic correlates of HIV protection can be identified from computational analysis of complex multivariate T-cell flow cytometry assays. Bioinformatics 28(7): 1009-1016 (2012)
[j23]Monir Hajiaghayi, Anne Condon, Holger H. Hoos: Analysis of energy-based algorithms for RNA secondary structure prediction. BMC Bioinformatics 13: 22 (2012)
[j22]
[c60]Lin Xu, Holger H. Hoos, Kevin Leyton-Brown: Predicting Satisfiability at the Phase Transition. AAAI 2012
[c59]Holger Hoos, Roland Kaminski, Torsten Schaub, Marius Thomas Schneider: aspeed: ASP-based Solver Scheduling. ICLP (Technical Communications) 2012: 176-187
[c58]Frank Hutter, Holger H. Hoos, Kevin Leyton-Brown: Parallel Algorithm Configuration. LION 2012: 55-70
[c57]Marius Schneider, Holger H. Hoos: Quantifying Homogeneity of Instance Sets for Algorithm Configuration. LION 2012: 190-204
[c56]James Styles, Holger H. Hoos, Martin Müller: Automatically Configuring Algorithms for Scaling Performance. LION 2012: 205-219
[c55]Lin Xu, Frank Hutter, Holger Hoos, Kevin Leyton-Brown: Evaluating Component Solver Contributions to Portfolio-Based Algorithm Selectors. SAT 2012: 228-241
[i6]Chris Thornton, Frank Hutter, Holger H. Hoos, Kevin Leyton-Brown: Auto-WEKA: Automated Selection and Hyper-Parameter Optimization of Classification Algorithms. CoRR abs/1208.3719 (2012)
[i5]Frank Hutter, Lin Xu, Holger H. Hoos, Kevin Leyton-Brown: Algorithm Runtime Prediction: The State of the Art. CoRR abs/1211.0906 (2012)- 2011
[j21]Therese C. Biedl, Stephane Durocher, Holger H. Hoos, Shuang Luan, Jared Saia, Maxwell Young: A note on improving the performance of approximation algorithms for radiation therapy. Inf. Process. Lett. 111(7): 326-333 (2011)
[c54]Frank Hutter, Holger H. Hoos, Kevin Leyton-Brown: Sequential Model-Based Optimization for General Algorithm Configuration. LION 2011: 507-523
[c53]Christopher Nell, Chris Fawcett, Holger H. Hoos, Kevin Leyton-Brown: HAL: A Framework for the Automated Analysis and Design of High-Performance Algorithms. LION 2011: 600-615
[c52]Dave A. D. Tompkins, Adrian Balint, Holger H. Hoos: Captain Jack: New Variable Selection Heuristics in Local Search for SAT. SAT 2011: 302-316
[i4]Craig Boutilier, Ronen I. Brafman, Carmel Domshlak, Holger H. Hoos, David Poole: CP-nets: A Tool for Representing and Reasoning withConditional Ceteris Paribus Preference Statements. CoRR abs/1107.0023 (2011)
[i3]Holger H. Hoos, Wayne J. Pullan: Dynamic Local Search for the Maximum Clique Problem. CoRR abs/1109.5717 (2011)
[i2]Lin Xu, Frank Hutter, Holger H. Hoos, Kevin Leyton-Brown: SATzilla: Portfolio-based Algorithm Selection for SAT. CoRR abs/1111.2249 (2011)- 2010
[j20]Frank Hutter, Holger H. Hoos, Kevin Leyton-Brown: Tradeoffs in the empirical evaluation of competing algorithm designs. Ann. Math. Artif. Intell. 60(1-2): 65-89 (2010)
[c51]Lin Xu, Holger Hoos, Kevin Leyton-Brown: Hydra: Automatically Configuring Algorithms for Portfolio-Based Selection. AAAI 2010
[c50]Holger H. Hoos: Computer-Aided Algorithm Design: Automated Tuning, Configuration, Selection, and Beyond. ICAPS 2010: 268-269
[c49]Frank Hutter, Holger H. Hoos, Kevin Leyton-Brown: Automated Configuration of Mixed Integer Programming Solvers. CPAIOR 2010: 186-202
[c48]Frank Hutter, Holger H. Hoos, Kevin Leyton-Brown, Kevin P. Murphy: Time-Bounded Sequential Parameter Optimization. LION 2010: 281-298
[c47]Dave A. D. Tompkins, Holger H. Hoos: Dynamic Scoring Functions with Variable Expressions: New SLS Methods for Solving SAT. SAT 2010: 278-292
2000 – 2009
- 2009
[j19]Frank Hutter, Holger H. Hoos, Kevin Leyton-Brown, Thomas Stützle: ParamILS: An Automatic Algorithm Configuration Framework. J. Artif. Intell. Res. (JAIR) 36: 267-306 (2009)
[c46]Frank Hutter, Holger H. Hoos, Kevin Leyton-Brown, Kevin P. Murphy: An experimental investigation of model-based parameter optimisation: SPO and beyond. GECCO 2009: 271-278
[c45]Ashiqur R. KhudaBukhsh, Lin Xu, Holger H. Hoos, Kevin Leyton-Brown: SATenstein: Automatically Building Local Search SAT Solvers from Components. IJCAI 2009: 517-524
[e3]Thomas Stützle, Mauro Birattari, Holger H. Hoos (Eds.): Engineering Stochastic Local Search Algorithms. Designing, Implementing and Analyzing Effective Heuristics, Second International Workshop, SLS 2009, Brussels, Belgium, September 3-4, 2009. Proceedings. Lecture Notes in Computer Science 5752, Springer 2009, ISBN 978-3-642-03750-4
[i1]Therese C. Biedl, Stephane Durocher, Holger H. Hoos, Shuang Luan, Jared Saia, Maxwell Young: Fixed-Parameter Tractability and Improved Approximations for Segment Minimization. CoRR abs/0905.4930 (2009)- 2008
[j18]Mirela Andronescu, Vera Bereg, Holger H. Hoos, Anne Condon: RNA STRAND: The RNA Secondary Structure and Statistical Analysis Database. BMC Bioinformatics 9 (2008)
[j17]Lin Xu, Frank Hutter, Holger H. Hoos, Kevin Leyton-Brown: SATzilla: Portfolio-based Algorithm Selection for SAT. J. Artif. Intell. Res. (JAIR) 32: 565-606 (2008)- 2007
[j16]
[j15]Rosalía Aguirre-Hernández, Holger H. Hoos, Anne Condon: Computational RNA secondary structure design: empirical complexity and improved methods. BMC Bioinformatics 8 (2007)
[j14]Alena Shmygelska, Holger H. Hoos: An adaptive bin framework search method for a beta-sheet protein homopolymer model. BMC Bioinformatics 8 (2007)
[j13]Chris Thachuk, Alena Shmygelska, Holger H. Hoos: A replica exchange Monte Carlo algorithm for protein folding in the HP model. BMC Bioinformatics 8 (2007)
[j12]Michael Huggett, Holger Hoos, Ron Rensink: Cognitive Principles for Information Management: The Principles of Mnemonic Associative Knowledge (P-MAK). Minds and Machines 17(4): 445-485 (2007)
[c44]Frank Hutter, Holger H. Hoos, Thomas Stützle: Automatic Algorithm Configuration Based on Local Search. AAAI 2007: 1152-1157
[c43]
[c42]Lin Xu, Frank Hutter, Holger H. Hoos, Kevin Leyton-Brown: : The Design and Analysis of an Algorithm Portfolio for SAT. CP 2007: 712-727
[c41]Frank Hutter, Domagoj Babic, Holger H. Hoos, Alan J. Hu: Boosting Verification by Automatic Tuning of Decision Procedures. FMCAD 2007: 27-34
[c40]Camilo Rostoker, Alan Wagner, Holger H. Hoos: A Parallel Workflow for Real-time Correlation and Clustering of High-Frequency Stock Market Data. IPDPS 2007: 1-10
[c39]Mirela Andronescu, Anne Condon, Holger H. Hoos, David H. Mathews, Kevin P. Murphy: Efficient parameter estimation for RNA secondary structure prediction. ISMB/ECCB (Supplement of Bioinformatics) 2007: 19-28
[c38]Mauro Brunato, Holger H. Hoos, Roberto Battiti: On Effectively Finding Maximal Quasi-cliques in Graphs. LION 2007: 41-55
[e2]Thomas Stützle, Mauro Birattari, Holger H. Hoos (Eds.): Engineering Stochastic Local Search Algorithms. Designing, Implementing and Analyzing Effective Heuristics, International Workshop, SLS 2007, Brussels, Belgium, September 6-8, 2007, Proceedings. Lecture Notes in Computer Science 4638, Springer 2007, ISBN 978-3-540-74445-0- 2006
[j11]Wayne J. Pullan, Holger H. Hoos: Dynamic Local Search for the Maximum Clique Problem. J. Artif. Intell. Res. (JAIR) 25: 159-185 (2006)
[c37]Dave A. D. Tompkins, Holger H. Hoos: On the Quality and Quantity of Random Decisions in Stochastic Local Search for SAT. Canadian Conference on AI 2006: 146-158
[c36]Frank Hutter, Youssef Hamadi, Holger H. Hoos, Kevin Leyton-Brown: Performance Prediction and Automated Tuning of Randomized and Parametric Algorithms. CP 2006: 213-228- 2005
[j10]Alena Shmygelska, Holger H. Hoos: An ant colony optimisation algorithm for the 2D and 3D hydrophobic polar protein folding problem. BMC Bioinformatics 6: 30 (2005)
[c35]Frank Hutter, Holger H. Hoos, Thomas Stützle: Efficient Stochastic Local Search for MPE Solving. IJCAI 2005: 169-174
[e1]Holger H. Hoos, David G. Mitchell (Eds.): Theory and Applications of Satisfiability Testing, 7th International Conference, SAT 2004, Vancouver, BC, Canada, May 10-13, 2004, Revised Selected Papers. Lecture Notes in Computer Science 3542, Springer 2005, ISBN 3-540-27829-X- 2004
[b3]Holger H. Hoos, Thomas Stützle: Stochastic Local Search: Foundations & Applications. Elsevier / Morgan Kaufmann 2004, ISBN 1-55860-872-9
[j9]Craig Boutilier, Ronen I. Brafman, Carmel Domshlak, Holger H. Hoos, David Poole: Preference-Based Constrained Optimization with CP-Nets. Computational Intelligence 20(2): 137-157 (2004)
[j8]Craig Boutilier, Ronen I. Brafman, Carmel Domshlak, Holger H. Hoos, David Poole: CP-nets: A Tool for Representing and Reasoning with Conditional Ceteris Paribus Preference Statements. J. Artif. Intell. Res. (JAIR) 21: 135-191 (2004)
[c34]
[c33]Eugene Nudelman, Kevin Leyton-Brown, Holger H. Hoos, Alex Devkar, Yoav Shoham: Understanding Random SAT: Beyond the Clauses-to-Variables Ratio. CP 2004: 438-452
[c32]
[c31]
[c30]Holger H. Hoos, Kevin Smyth, Thomas Stützle: Search Space Features Underlying the Performance of Stochastic Local Search Algorithms for MAX-SAT. PPSN 2004: 51-60
[c29]Dave A. D. Tompkins, Holger H. Hoos: UBCSAT: An Implementation and Experimentation Environment for SLS Algorithms for SAT & MAX-SAT. SAT 2004
[c28]Dave A. D. Tompkins, Holger H. Hoos: UBCSAT: An Implementation and Experimentation Environment for SLS Algorithms for SAT and MAX-SAT. SAT (Selected Papers 2004: 306-320- 2003
[j7]Andrew T. Kwon, Holger H. Hoos, Raymond T. Ng: Inference of Transcriptional Regulation Relationships from Gene Expression Data. Bioinformatics 19(8): 905-912 (2003)
[j6]Mirela Andronescu, Rosalía Aguirre-Hernández, Anne Condon, Holger H. Hoos: RNAsoft: a suite of RNA secondary structure prediction and design software tools. Nucleic Acids Research 31(13): 3416-3422 (2003)
[c27]Michael Pavlin, Holger H. Hoos, Thomas Stützle: Stochastic Local Search for Multiprocessor Scheduling for Minimum Total Tardiness. Canadian Conference on AI 2003: 96-113
[c26]Kevin Smyth, Holger H. Hoos, Thomas Stützle: Iterated Robust Tabu Search for MAX-SAT. Canadian Conference on AI 2003: 129-144
[c25]Dave A. D. Tompkins, Holger H. Hoos: Scaling and Probabilistic Smoothing: Dynamic Local Search for Unweighted MAX-SAT. Canadian Conference on AI 2003: 145-159
[c24]Alena Shmygelska, Holger H. Hoos: An Improved Ant Colony Optimisation Algorithm for the 2D HP Protein Folding Problem. Canadian Conference on AI 2003: 400-417
[c23]Dan C. Tulpan, Holger H. Hoos: Hybrid Randomised Neighbourhoods Improve Stochastic Local Search for DNA Code Design. Canadian Conference on AI 2003: 418-433
[c22]Ian P. Gent, Holger H. Hoos, Andrew G. D. Rowley, Kevin Smyth: Using Stochastic Local Search to Solve Quantified Boolean Formulae. CP 2003: 348-362
[c21]Andrew Tae-Jun Kwon, Holger H. Hoos, Raymond T. Ng: Inference of Transcriptional Regulation Relationships from Gene Expression Data. SAC 2003: 135-140- 2002
[c20]
[c19]Holger H. Hoos: A Mixture-Model for the Behaviour of SLS Algorithms for SAT. AAAI/IAAI 2002: 661-667
[c18]Alena Shmygelska, Rosalía Aguirre-Hernández, Holger H. Hoos: An Ant Colony Optimization Algorithm for the 2D HP Protein Folding Problem. Ant Algorithms 2002: 40-53
[c17]Frank Hutter, Dave A. D. Tompkins, Holger H. Hoos: Scaling and Probabilistic Smoothing: Efficient Dynamic Local Search for SAT. CP 2002: 233-248
[c16]Christine E. Heitsch, Anne Condon, Holger H. Hoos: From RNA Secondary Structure to Coding Theory: A Combinatorial Approach. DNA 2002: 215-228
[c15]Dan C. Tulpan, Holger H. Hoos, Anne Condon: Stochastic Local Search Algorithms for DNA Word Design. DNA 2002: 229-241
[c14]- 2001
[j5]Yves Lespérance, Gerd Wagner, William P. Birmingham, Kurt D. Bollacker, Alexander Nareyek, J. Paul Walser, David W. Aha, Timothy W. Finin, Benjamin N. Grosof, Nathalie Japkowicz, Robert Holte, Lise Getoor, Carla P. Gomes, Holger H. Hoos, Alan C. Schultz, Miroslav Kubat, Tom M. Mitchell, Jörg Denzinger, Yolanda Gil, Karen L. Myers, Claudio Bettini, Angelo Montanari: AAAI 2000 Workshop Reports. AI Magazine 22(1): 127-136 (2001)
[j4]Thomas Stützle, Holger H. Hoos: Ameisenalgorithmen zur Lösung kombinatorischer Optimierungsprobleme. KI 15(1): 45-51 (2001)
[c13]Craig Boutilier, Holger H. Hoos: Bidding Languages for Combinatorial Auctions. IJCAI 2001: 1211-1217
[c12]Holger H. Hoos, Kai Renz, Marko Görg: GUIDO/MIR - an Experimental Musical Information Retrieval System based on GUIDO Music Notation. ISMIR 2001: 41-50- 2000
[j3]Thomas Stützle, Holger H. Hoos: MAX-MIN Ant System. Future Generation Comp. Syst. 16(8): 889-914 (2000)
[j2]Holger H. Hoos, Thomas Stützle: Local Search Algorithms for SAT: An Empirical Evaluation. J. Autom. Reasoning 24(4): 421-481 (2000)
[c11]Holger H. Hoos, Craig Boutilier: Solving Combinatorial Auctions Using Stochastic Local Search. AAAI/IAAI 2000: 22-29
1990 – 1999
- 1999
[b2]Holger H. Hoos: Stochastic local search - methods, models, applications. DISKI 215, Infix 1999, ISBN 978-3-89601-215-9, pp. I-X, 1-219
[j1]Holger H. Hoos, Thomas Stützle: Towards a Characterisation of the Behaviour of Stochastic Local Search Algorithms for SAT. Artif. Intell. 112(1-2): 213-232 (1999)
[c10]Ian P. Gent, Holger H. Hoos, Patrick Prosser, Toby Walsh: Morphing: Combining Structure and Randomness. AAAI/IAAI 1999: 654-660
[c9]Holger H. Hoos: On the Run-time Behaviour of Stochastic Local Search Algorithms for SAT. AAAI/IAAI 1999: 661-666
[c8]Holger H. Hoos: SAT-Encodings, Search Space Structure, and Local Search Performance. IJCAI 1999: 296-303
[c7]
[c6]
[c5]Craig Boutilier, Ronen I. Brafman, Holger H. Hoos, David Poole: Reasoning With Conditional Ceteris Paribus Preference Statements. UAI 1999: 71-80- 1998
[b1]Holger H. Hoos: Stochastic local search - methods, models, applications. TU Darmstadt 1998, pp. I-VI, 1-218
[c4]Holger H. Hoos, Thomas Stützle: Some Surprising Regularities in the Behaviour of Stochastic Local Search. CP 1998: 470
[c3]Holger H. Hoos, Thomas Stützle: Evaluating Las Vegas Algorithms: Pitfalls and Remedies. UAI 1998: 238-245- 1996
[c2]- 1994
[c1]Antje Beeringer, Gerd Aschemann, Holger H. Hoos, Michael Metzger, Andreas Weiss: GSAT versus Simulated Annealing. ECAI 1994: 130-134
Coauthor Index
data released under the ODC-BY 1.0 license. See also our legal information page
last updated on 2013-10-02 11:23 CEST by the dblp team



