Please note: This is a beta version of the new dblp website.
You can find the classic dblp view of this page here.
You can find the classic dblp view of this page here.
Barbara Hammer
2010 – today
- 2013
[j60]Barbara Hammer, Daniel A. Keim, Neil D. Lawrence, Guy Lebanon: Preface: Intelligent interactive data visualization. Data Min. Knowl. Discov. 27(1): 1-3 (2013)
[j59]Bassam Mokbel, Wouter Lueks, Andrej Gisbrecht, Barbara Hammer: Visualizing the quality of dimensionality reduction. Neurocomputing 112: 109-123 (2013)
[c114]Sebastian Gross, Bassam Mokbel, Barbara Hammer, Niels Pinkwart: Towards Providing Feedback to Students in Absence of Formalized Domain Models. AIED 2013: 644-648
[c113]Sebastian Gross, Bassam Mokbel, Barbara Hammer, Niels Pinkwart: Towards a Domain-Independent ITS Middleware Architecture. ICALT 2013: 408-409
[c112]Barbara Hammer, Andrej Gisbrecht, Alexander Schulz: Applications of Discriminative Dimensionality Reduction. ICPRAM 2013: 33-41
[c111]Alexander Schulz, Andrej Gisbrecht, Barbara Hammer: Using Nonlinear Dimensionality Reduction to Visualize Classifiers. IWANN (1) 2013: 59-68
[c110]Xibin Zhu, Frank-Michael Schleif, Barbara Hammer: Secure Semi-supervised Vector Quantization for Dissimilarity Data. IWANN (1) 2013: 347-356- 2012
[j58]Andrej Gisbrecht, Bassam Mokbel, Frank-Michael Schleif, Xibin Zhu, Barbara Hammer: Linear Time Relational Prototype Based Learning. Int. J. Neural Syst. 22(5) (2012)
[j57]Xibin Zhu, Andrej Gisbrecht, Frank-Michael Schleif, Barbara Hammer: Approximation techniques for clustering dissimilarity data. Neurocomputing 90: 72-84 (2012)
[j56]Marika Kästner, Barbara Hammer, Michael Biehl, Thomas Villmann: Functional relevance learning in generalized learning vector quantization. Neurocomputing 90: 85-95 (2012)
[j55]
[j54]
[j53]Kerstin Bunte, Michael Biehl, Barbara Hammer: A General Framework for Dimensionality-Reducing Data Visualization Mapping. Neural Computation 24(3): 771-804 (2012)
[j52]Kerstin Bunte, Petra Schneider, Barbara Hammer, Frank-Michael Schleif, Thomas Villmann, Michael Biehl: Limited Rank Matrix Learning, discriminative dimension reduction and visualization. Neural Networks 26: 159-173 (2012)
[c109]Frank-Michael Schleif, Xibin Zhu, Barbara Hammer: Soft Competitive Learning for Large Data Sets. ADBIS Workshops 2012: 141-151
[c108]Bassam Mokbel, Sebastian Gross, Markus Lux, Niels Pinkwart, Barbara Hammer: How to Quantitatively Compare Data Dissimilarities for Unsupervised Machine Learning? ANNPR 2012: 1-13
[c107]
[c106]Sebastian Gross, Bassam Mokbel, Barbara Hammer, Niels Pinkwart: Feedback Provision Strategies in Intelligent Tutoring Systems Based on Clustered Solution Spaces. DeLFI 2012: 27-38
[c105]Barbara Hammer, Bassam Mokbel, Frank-Michael Schleif, Xibin Zhu: White Box Classification of Dissimilarity Data. HAIS (1) 2012: 309-321
[c104]Frank-Michael Schleif, Bassam Mokbel, Andrej Gisbrecht, Leslie Theunissen, Volker Dürr, Barbara Hammer: Learning Relevant Time Points for Time-Series Data in the Life Sciences. ICANN (2) 2012: 531-539
[c103]Frank-Michael Schleif, Xibin Zhu, Andrej Gisbrecht, Barbara Hammer: Fast approximated relational and kernel clustering. ICPR 2012: 1229-1232
[c102]Andrej Gisbrecht, Daniela Hofmann, Barbara Hammer: Discriminative Dimensionality Reduction Mappings. IDA 2012: 126-138
[c101]Frank-Michael Schleif, Xibin Zhu, Barbara Hammer: A Conformal Classifier for Dissimilarity Data. AIAI (2) 2012: 234-243
[c100]Andrej Gisbrecht, Bassam Mokbel, Barbara Hammer: Linear basis-function t-SNE for fast nonlinear dimensionality reduction. IJCNN 2012: 1-8
[c99]Frank-Michael Schleif, Andrej Gisbrecht, Barbara Hammer: Relevance learning for short high-dimensional time series in the life sciences. IJCNN 2012: 1-8
[c98]Xibin Zhu, Frank-Michael Schleif, Barbara Hammer: Patch Processing for Relational Learning Vector Quantization. ISNN (1) 2012: 55-63
[c97]Sebastian Gross, Xibin Zhu, Barbara Hammer, Niels Pinkwart: Cluster Based Feedback Provision Strategies in Intelligent Tutoring Systems. ITS 2012: 699-700- 2011
[j51]Frank-Michael Schleif, Thomas Villmann, Barbara Hammer, Petra Schneider: Efficient Kernelized Prototype Based Classification. Int. J. Neural Syst. 21(6): 443-457 (2011)
[j50]Banchar Arnonkijpanich, Alexander Hasenfuss, Barbara Hammer: Local matrix adaptation in topographic neural maps. Neurocomputing 74(4): 522-539 (2011)
[j49]Kerstin Bunte, Barbara Hammer, Thomas Villmann, Michael Biehl, Axel Wismüller: Neighbor embedding XOM for dimension reduction and visualization. Neurocomputing 74(9): 1340-1350 (2011)
[j48]Andrej Gisbrecht, Barbara Hammer: Relevance learning in generative topographic mapping. Neurocomputing 74(9): 1351-1358 (2011)
[j47]Andrej Gisbrecht, Bassam Mokbel, Barbara Hammer: Relational generative topographic mapping. Neurocomputing 74(9): 1359-1371 (2011)
[c96]Andrej Gisbrecht, Barbara Hammer, Frank-Michael Schleif, Xibin Zhu: Accelerating kernel clustering for biomedical data analysis. CIBCB 2011: 154-161
[c95]
[c94]
[c93]Marika Kästner, Barbara Hammer, Michael Biehl, Thomas Villmann: Generalized functional relevance learning vector quantization. ESANN 2011
[c92]
[c91]Frank-Michael Schleif, Andrej Gisbrecht, Barbara Hammer: Accelerating Kernel Neural Gas. ICANN (1) 2011: 150-158
[c90]Barbara Hammer, Frank-Michael Schleif, Xibin Zhu: Relational Extensions of Learning Vector Quantization. ICONIP (2) 2011: 481-489
[c89]Barbara Hammer, Bassam Mokbel, Frank-Michael Schleif, Xibin Zhu: Prototype-Based Classification of Dissimilarity Data. IDA 2011: 185-197
[c88]Andrej Gisbrecht, Frank-Michael Schleif, Xibin Zhu, Barbara Hammer: Linear Time Heuristics for Topographic Mapping of Dissimilarity Data. IDEAL 2011: 25-33
[c87]Barbara Hammer, Andrej Gisbrecht, Alexander Hasenfuss, Bassam Mokbel, Frank-Michael Schleif, Xibin Zhu: Topographic Mapping of Dissimilarity Data. WSOM 2011: 1-15
[c86]Barbara Hammer, Michael Biehl, Kerstin Bunte, Bassam Mokbel: A General Framework for Dimensionality Reduction for Large Data Sets. WSOM 2011: 277-287
[i4]Frank-Michael Schleif, Andrej Gisbrecht, Barbara Hammer: Supervised learning of short and high-dimensional temporal sequences for life science measurements. CoRR abs/1110.2416 (2011)
[i3]Wouter Lueks, Bassam Mokbel, Michael Biehl, Barbara Hammer: How to Evaluate Dimensionality Reduction? - Improving the Co-ranking Matrix. CoRR abs/1110.3917 (2011)
[i2]Michael Biehl, Barbara Hammer, Erzsébet Merényi, Alessandro Sperduti, Thomas Villmann: Learning in the context of very high dimensional data (Dagstuhl Seminar 11341). Dagstuhl Reports 1(8): 67-95 (2011)- 2010
[j46]Marco Gori, Barbara Hammer, Pascal Hitzler, Guenther Palm: Perspectives and challenges for recurrent neural network training. Logic Journal of the IGPL 18(5): 617-619 (2010)
[j45]Kerstin Bunte, Barbara Hammer, Axel Wismüller, Michael Biehl: Adaptive local dissimilarity measures for discriminative dimension reduction of labeled data. Neurocomputing 73(7-9): 1074-1092 (2010)
[j44]Tina Geweniger, Dietlind Zühlke, Barbara Hammer, Thomas Villmann: Median fuzzy c-means for clustering dissimilarity data. Neurocomputing 73(7-9): 1109-1116 (2010)
[j43]Petra Schneider, Michael Biehl, Barbara Hammer: Hyperparameter learning in probabilistic prototype-based models. Neurocomputing 73(7-9): 1117-1124 (2010)
[j42]Stephan Simmuteit, Frank-Michael Schleif, Thomas Villmann, Barbara Hammer: Evolving trees for the retrieval of mass spectrometry-based bacteria fingerprints. Knowl. Inf. Syst. 25(2): 327-343 (2010)
[j41]Barbara Hammer, Alexander Hasenfuss: Topographic Mapping of Large Dissimilarity Data Sets. Neural Computation 22(9): 2229-2284 (2010)
[j40]Aree Witoelar, Anarta Ghosh, J. J. G. de Vries, Barbara Hammer, Michael Biehl: Window-Based Example Selection in Learning Vector Quantization. Neural Computation 22(11): 2924-2961 (2010)
[j39]Banchar Arnonkijpanich, Alexander Hasenfuss, Barbara Hammer: Local matrix learning in clustering and applications for manifold visualization. Neural Networks 23(4): 476-486 (2010)
[j38]Petra Schneider, Kerstin Bunte, Han Stiekema, Barbara Hammer, Thomas Villmann, Michael Biehl: Regularization in matrix relevance learning. IEEE Transactions on Neural Networks 21(5): 831-840 (2010)
[c85]Banchar Arnonkijpanich, Barbara Hammer: Global Coordination Based on Matrix Neural Gas for Dynamic Texture Synthesis. ANNPR 2010: 84-95
[c84]Thomas Villmann, Sven Haase, Frank-Michael Schleif, Barbara Hammer, Michael Biehl: The Mathematics of Divergence Based Online Learning in Vector Quantization. ANNPR 2010: 108-119
[c83]Barbara Hammer, Alexander Hasenfuss: Clustering Very Large Dissimilarity Data Sets. ANNPR 2010: 259-273
[c82]Kerstin Bunte, Barbara Hammer, Thomas Villmann, Michael Biehl, Axel Wismüller: Exploratory Observation Machine (XOM) with Kullback-Leibler Divergence for Dimensionality Reduction and Visualization. ESANN 2010
[c81]
[c80]
[c79]
[c78]Thomas Villmann, Sven Haase, Frank-Michael Schleif, Barbara Hammer: Divergence Based Online Learning in Vector Quantization. ICAISC (1) 2010: 479-486
[c77]Frank-Michael Schleif, Thomas Villmann, Barbara Hammer, Petra Schneider, Michael Biehl: Generalized Derivative Based Kernelized Learning Vector Quantization. IDEAL 2010: 21-28
[c76]Andrej Gisbrecht, Bassam Mokbel, Alexander Hasenfuss, Barbara Hammer: Visualizing Dissimilarity Data Using Generative Topographic Mapping. KI 2010: 227-237
2000 – 2009
- 2009
[j37]Frank-Michael Schleif, Thomas Villmann, Markus Kostrzewa, Barbara Hammer, Alexander Gammerman: Cancer informatics by prototype networks in mass spectrometry. Artificial Intelligence in Medicine 45(2-3): 215-228 (2009)
[j36]Nikolai Alex, Alexander Hasenfuss, Barbara Hammer: Patch clustering for massive data sets. Neurocomputing 72(7-9): 1455-1469 (2009)
[j35]Petra Schneider, Michael Biehl, Barbara Hammer: Distance Learning in Discriminative Vector Quantization. Neural Computation 21(10): 2942-2969 (2009)
[j34]Petra Schneider, Michael Biehl, Barbara Hammer: Adaptive Relevance Matrices in Learning Vector Quantization. Neural Computation 21(12): 3532-3561 (2009)
[c75]Kerstin Bunte, Barbara Hammer, Michael Biehl: Nonlinear Dimension Reduction and Visualization of Labeled Data. CAIP 2009: 1162-1170
[c74]Thomas Villmann, Barbara Hammer, Michael Biehl: Some Theoretical Aspects of the Neural Gas Vector Quantizer. Similarity-Based Clustering 2009: 23-34
[c73]Barbara Hammer, Alexander Hasenfuss, Fabrice Rossi: Median Topographic Maps for Biomedical Data Sets. Similarity-Based Clustering 2009: 92-117
[c72]Kerstin Bunte, Barbara Hammer, Petra Schneider, Michael Biehl: Nonlinear Discriminative Data Visualization. ESANN 2009
[c71]Tina Geweniger, Dietlind Zühlke, Barbara Hammer, Thomas Villmann: Median Variant of Fuzzy c-Means. ESANN 2009
[c70]Barbara Hammer, Benjamin Schrauwen, Jochen J. Steil: Recent advances in efficient learning of recurrent networks. ESANN 2009
[c69]Petra Schneider, Michael Biehl, Barbara Hammer: Hyperparameter Learning in Robust Soft LVQ. ESANN 2009
[c68]
[c67]Bassam Mokbel, Alexander Hasenfuss, Barbara Hammer: Graph-Based Representation of Symbolic Musical Data. GbRPR 2009: 42-51
[c66]Tina Geweniger, Dietlind Zühlke, Barbara Hammer, Thomas Villmann: Fuzzy Variant of Affinity Propagation in Comparison to Median Fuzzy c-Means. WSOM 2009: 72-79
[c65]Thomas Villmann, Barbara Hammer: Functional Principal Component Learning Using Oja's Method and Sobolev Norms. WSOM 2009: 325-333
[p4]Michael Biehl, Barbara Hammer, Petra Schneider, Thomas Villmann: Metric Learning for Prototype-Based Classification. Innovations in Neural Information Paradigms and Applications 2009: 183-199
[e4]Michael Biehl, Barbara Hammer, Michel Verleysen, Thomas Villmann (Eds.): Similarity-Based Clustering, Recent Developments and Biomedical Applications [outcome of a Dagstuhl Seminar]. Lecture Notes in Computer Science 5400, Springer 2009, ISBN 978-3-642-01804-6
[r1]Frank-Michael Schleif, Thomas Villmann, Barbara Hammer: Prototype Based Classification in Bioinformatics. Encyclopedia of Artificial Intelligence 2009: 1337-1342
[i1]Barbara Hammer, Alexander Hasenfuß, Fabrice Rossi: Median topographic maps for biomedical data sets. CoRR abs/0909.0638 (2009)- 2008
[j33]Thomas Villmann, Frank-Michael Schleif, Markus Kostrzewa, Axel Walch, Barbara Hammer: Classification of mass-spectrometric data in clinical proteomics using learning vector quantization methods. Briefings in Bioinformatics 9(2): 129-143 (2008)
[j32]Frank-Michael Schleif, Thomas Villmann, Barbara Hammer: Prototype based fuzzy classification in clinical proteomics. Int. J. Approx. Reasoning 47(1): 4-16 (2008)
[j31]Aree Witoelar, Michael Biehl, Anarta Ghosh, Barbara Hammer: Learning dynamics and robustness of vector quantization and neural gas. Neurocomputing 71(7-9): 1210-1219 (2008)
[c64]Alexander Hasenfuss, Barbara Hammer: Single Pass Clustering and Classification of Large Dissimilarity Datasets. Artificial Intelligence and Pattern Recognition 2008: 219-223
[c63]Alexander Hasenfuss, Barbara Hammer, Fabrice Rossi: Patch Relational Neural Gas - Clustering of Huge Dissimilarity Datasets. ANNPR 2008: 1-12
[c62]Marc Strickert, Petra Schneider, Jens Keilwagen, Thomas Villmann, Michael Biehl, Barbara Hammer: Discriminatory Data Mapping by Matrix-Based Supervised Learning Metrics. ANNPR 2008: 78-89
[c61]Marc Strickert, Nese Sreenivasulu, Thomas Villmann, Barbara Hammer: Robust Centroid-Based Clustering using Derivatives of Pearson Correlation. BIOSIGNALS (2) 2008: 197-203
[c60]Luc De Raedt, Barbara Hammer, Pascal Hitzler, Wolfgang Maass: 08041 Summary -- Recurrent Neural Networks - Models, Capacities, and Applications. Recurrent Neural Networks 2008
[c59]Luc De Raedt, Barbara Hammer, Pascal Hitzler, Wolfgang Maass: 08041 Abstracts Collection -- Recurrent Neural Networks - Models, Capacities, and Applications. Recurrent Neural Networks 2008
[c58]
[c57]Alexander Hasenfuss, Barbara Hammer, Tina Geweniger, Thomas Villmann: Magnification Control in Relational Neural Gas. ESANN 2008: 325-330
[c56]Banchar Arnonkijpanich, Barbara Hammer, Alexander Hasenfuss, Chidchanok Lursinsap: Matrix Learning for Topographic Neural Maps. ICANN (1) 2008: 572-582
[c55]Tina Geweniger, Frank-Michael Schleif, Alexander Hasenfuss, Barbara Hammer, Thomas Villmann: Comparison of Cluster Algorithms for the Analysis of Text Data Using Kolmogorov Complexity. ICONIP (2) 2008: 61-69
[c54]Tim Winkler, Jens Drieseberg, Kai Hormann, Alexander Hasenfuss, Barbara Hammer: Thinning Mesh Animations. VMV 2008: 149-158
[p3]Frank-Michael Schleif, Thomas Villmann, Barbara Hammer, Martijn van der Werff, André M. Deelder, Rob A. E. M. Tollenaar: Analysis of Spectral Data in Clinical Proteomics by Use of Learning Vector Quantizers. Computational Intelligence in Biomedicine and Bioinformatics 2008: 141-167
[e3]Luc De Raedt, Barbara Hammer, Pascal Hitzler, Wolfgang Maass (Eds.): Recurrent Neural Networks - Models, Capacities, and Applications, 20.01. - 25.01.2008. Dagstuhl Seminar Proceedings 08041, Internationales Begegnungs- und Forschungszentrum fuer Informatik (IBFI), Schloss Dagstuhl, Germany 2008- 2007
[j30]Frank-Michael Schleif, Barbara Hammer, Thomas Villmann: Margin-based active learning for LVQ networks. Neurocomputing 70(7-9): 1215-1224 (2007)
[j29]Barbara Hammer, Alexander Hasenfuss, Thomas Villmann: Magnification control for batch neural gas. Neurocomputing 70(7-9): 1225-1234 (2007)
[j28]Michael Biehl, Anarta Ghosh, Barbara Hammer: Dynamics and Generalization Ability of LVQ Algorithms. Journal of Machine Learning Research 8: 323-360 (2007)
[c53]Michael Biehl, Barbara Hammer, Michel Verleysen, Thomas Villmann: 07131 Summary -- Similarity-based Clustering and its Application to Medicine and Biology. Similarity-based Clustering and its Application to Medicine and Biology 2007
[c52]Michael Biehl, Barbara Hammer, Michel Verleysen, Thomas Villmann: 07131 Abstracts Collection -- Similarity-based Clustering and its Application to Medicine and Biology. Similarity-based Clustering and its Application to Medicine and Biology 2007
[c51]Barbara Hammer, Alexander Hasenfuss: Relational Clustering. Similarity-based Clustering and its Application to Medicine and Biology 2007
[c50]Barbara Hammer, Alessio Micheli, Alessandro Sperduti: A general framework for unsupervised preocessing of structured data. Probabilistic, Logical and Relational Learning - A Further Synthesis 2007
[c49]Aree Witoelar, Michael Biehl, Barbara Hammer: Learning Vector Quantization: generalization ability and dynamics of competing prototypes. Similarity-based Clustering and its Application to Medicine and Biology 2007
[c48]
[c47]
[c46]Aree Witoelar, Michael Biehl, Anarta Ghosh, Barbara Hammer: On the dynamics of Vector Quantization and Neural Gas. ESANN 2007: 127-132
[c45]
[c44]Barbara Hammer, Alexander Hasenfuss, Frank-Michael Schleif, Thomas Villmann, Marc Strickert, Udo Seiffert: Intuitive Clustering of Biological Data. IJCNN 2007: 1877-1882
[c43]Alexander Hasenfuss, Barbara Hammer, Frank-Michael Schleif, Thomas Villmann: Neural Gas Clustering for Dissimilarity Data with Continuous Prototypes. IWANN 2007: 539-546
[c42]Thomas Villmann, Frank-Michael Schleif, Erzsébet Merényi, Barbara Hammer: Fuzzy Labeled Self-Organizing Map for Classification of Spectra. IWANN 2007: 556-563
[c41]Frank-Michael Schleif, Thomas Villmann, Barbara Hammer: Supervised Neural Gas for Classification of Functional Data and Its Application to the Analysis of Clinical Proteom Spectra. IWANN 2007: 1036-1044
[c40]
[c39]Frank-Michael Schleif, Thomas Villmann, Barbara Hammer: Analysis of Proteomic Spectral Data by Multi Resolution Analysis and Self-Organizing Maps. WILF 2007: 563-570
[p2]Barbara Hammer, Alessio Micheli, Alessandro Sperduti: Adaptive Contextual Processing of Structured Data by Recursive Neural Networks: A Survey of Computational Properties. Perspectives of Neural-Symbolic Integration 2007: 67-94
[p1]Peter Tino, Barbara Hammer, Mikael Bodén: Markovian Bias of Neural-based Architectures With Feedback Connections. Perspectives of Neural-Symbolic Integration 2007: 95-133
[e2]Michael Biehl, Barbara Hammer, Michel Verleysen, Thomas Villmann (Eds.): Similarity-based Clustering and its Application to Medicine and Biology, 25.03. - 30.03.2007. Dagstuhl Seminar Proceedings 07131, Internationales Begegnungs- und Forschungszentrum fuer Informatik (IBFI), Schloss Dagstuhl, Germany 2007
[e1]Barbara Hammer, Pascal Hitzler (Eds.): Perspectives of Neural-Symbolic Integration. Studies in Computational Intelligence 77, Springer 2007, ISBN 978-3-540-73953-1- 2006
[j27]Marc Strickert, Udo Seiffert, Nese Sreenivasulu, Winfriede Weschke, Thomas Villmann, Barbara Hammer: Generalized relevance LVQ (GRLVQ) with correlation measures for gene expression analysis. Neurocomputing 69(7-9): 651-659 (2006)
[j26]Michael Biehl, Anarta Ghosh, Barbara Hammer: Learning vector quantization: The dynamics of winner-takes-all algorithms. Neurocomputing 69(7-9): 660-670 (2006)
[j25]Thomas Villmann, Frank-Michael Schleif, Barbara Hammer: Prototype-based fuzzy classification with local relevance for proteomics. Neurocomputing 69(16-18): 2425-2428 (2006)
[j24]Thomas Villmann, Frank-Michael Schleif, Barbara Hammer: Comparison of relevance learning vector quantization with other metric adaptive classification methods. Neural Networks 19(5): 610-622 (2006)
[j23]Marie Cottrell, Barbara Hammer, Alexander Hasenfuss, Thomas Villmann: Batch and median neural gas. Neural Networks 19(6-7): 762-771 (2006)
[j22]Thomas Villmann, Barbara Hammer, Frank-Michael Schleif, Tina Geweniger, Wieland Hermann: Fuzzy classification by fuzzy labeled neural gas. Neural Networks 19(6-7): 772-779 (2006)
[j21]Anarta Ghosh, Michael Biehl, Barbara Hammer: Performance analysis of LVQ algorithms: A statistical physics approach. Neural Networks 19(6-7): 817-829 (2006)
[c38]Barbara Hammer, Alexander Hasenfuss, Frank-Michael Schleif, Thomas Villmann: Supervised Batch Neural Gas. ANNPR 2006: 33-45
[c37]Thomas Villmann, Udo Seiffert, Frank-Michael Schleif, Cornelia Brüß, Tina Geweniger, Barbara Hammer: Fuzzy Labeled Self-Organizing Map with Label-Adjusted Prototypes. ANNPR 2006: 46-56
[c36]Thomas Villmann, Barbara Hammer, Udo Seiffert: Perspectives of Self-adapted Self-organizing Clustering in Organic Computing. BioADIT 2006: 141-159
[c35]Frank-Michael Schleif, Thomas Elssner, Markus Kostrzewa, Thomas Villmann, Barbara Hammer: Analysis and Visualization of Proteomic Data by Fuzzy Labeled Self-Organizing Maps. CBMS 2006: 919-924
[c34]Barbara Hammer, Alexander Hasenfuss, Thomas Villmann: Magnification control for batch neural gas. ESANN 2006: 7-12
[c33]Udo Seiffert, Barbara Hammer, Samuel Kaski, Thomas Villmann: Neural networks and machine learning in bioinformatics - theory and applications. ESANN 2006: 521-532
[c32]Frank-Michael Schleif, Barbara Hammer, Thomas Villmann: Margin based Active Learning for LVQ Networks. ESANN 2006: 539-544
[c31]Barbara Hammer, Thomas Villmann, Frank-Michael Schleif, Cornelia Albani, Wieland Hermann: Learning Vector Quantization Classification with Local Relevance Determination for Medical Data. ICAISC 2006: 603-612
[c30]Thomas Villmann, Barbara Hammer, Frank-Michael Schleif, Tina Geweniger, Tom Fischer, Marie Cottrell: Prototype Based Classification Using Information Theoretic Learning. ICONIP (2) 2006: 40-49- 2005
[j20]Marie Cottrell, Barbara Hammer, Thomas Villmann: New Aspects in Neurocomputing. Neurocomputing 63: 1-3 (2005)
[j19]Marc Strickert, Barbara Hammer, Sebastian Blohm: Unsupervised recursive sequence processing. Neurocomputing 63: 69-97 (2005)
[j18]Kai Gersmann, Barbara Hammer: Improving iterative repair strategies for scheduling with the SVM. Neurocomputing 63: 271-292 (2005)
[j17]
[j16]Barbara Hammer, Alessio Micheli, Alessandro Sperduti: Universal Approximation Capability of Cascade Correlation for Structures. Neural Computation 17(5): 1109-1159 (2005)
[j15]Barbara Hammer, Craig Saunders, Alessandro Sperduti: Special issue on neural networks and kernel methods for structured domains. Neural Networks 18(8): 1015-1018 (2005)
[j14]Barbara Hammer, Marc Strickert, Thomas Villmann: Supervised Neural Gas with General Similarity Measure. Neural Processing Letters 21(1): 21-44 (2005)
[j13]Barbara Hammer, Marc Strickert, Thomas Villmann: On the Generalization Ability of GRLVQ Networks. Neural Processing Letters 21(2): 109-120 (2005)
[j12]Bhaskar DasGupta, Barbara Hammer: On approximate learning by multi-layered feedforward circuits. Theor. Comput. Sci. 348(1): 95-127 (2005)
[c29]Michael Biehl, Anarta Ghosh, Barbara Hammer: The dynamics of Learning Vector Quantization. ESANN 2005: 13-18
[c28]Barbara Hammer, Andreas Rechtien, Marc Strickert, Thomas Villmann: Relevance learning for mental disease classification. ESANN 2005: 139-144
[c27]
[c26]Katharina Tluk von Toschanowitz, Barbara Hammer, Helge Ritter: Relevance determination in reinforcement learning. ESANN 2005: 369-374
[c25]Thomas Villmann, Frank-Michael Schleif, Barbara Hammer: Fuzzy Labeled Soft Nearest Neighbor Classification with Relevance Learning. ICMLA 2005
[c24]Frank-Michael Schleif, Thomas Villmann, Barbara Hammer: Local Metric Adaptation for Soft Nearest Prototype Classification to Classify Proteomic Data. WILF 2005: 290-296- 2004
[j11]Barbara Hammer, Alessio Micheli, Alessandro Sperduti, Marc Strickert: A general framework for unsupervised processing of structured data. Neurocomputing 57: 3-35 (2004)
[j10]Barbara Hammer, Alessio Micheli, Alessandro Sperduti, Marc Strickert: Recursive self-organizing network models. Neural Networks 17(8-9): 1061-1085 (2004)
[c23]
[c22]
[c21]
[c20]Frank-Michael Schleif, U. Clauss, Thomas Villmann, Barbara Hammer: Supervised relevance neural gas and unified maximum separability analysis for classification of mass spectrometric data. ICMLA 2004: 374-379- 2003
[j9]Barbara Hammer, Peter Tiño: Recurrent Neural Networks with Small Weights Implement Definite Memory Machines. Neural Computation 15(8): 1897-1929 (2003)
[j8]Peter Tiño, Barbara Hammer: Architectural Bias in Recurrent Neural Networks: Fractal Analysis. Neural Computation 15(8): 1931-1957 (2003)
[j7]Thomas Villmann, Erzsébet Merényi, Barbara Hammer: Neural maps in remote sensing image analysis. Neural Networks 16(3-4): 389-403 (2003)
[j6]Barbara Hammer, Kai Gersmann: A Note on the Universal Approximation Capability of Support Vector Machines. Neural Processing Letters 17(1): 43-53 (2003)
[c19]
[c18]
[c17]Kai Gersmann, Barbara Hammer: Improving iterative repair strategies for scheduling with the SVM. ESANN 2003: 235-240- 2002
[j5]Barbara Hammer: Recurrent networks for structured data - A unifying approach and its properties. Cognitive Systems Research 3(2): 145-165 (2002)
[j4]Barbara Hammer, Thomas Villmann: Generalized relevance learning vector quantization. Neural Networks 15(8-9): 1059-1068 (2002)
[c16]
[c15]Barbara Hammer, Jochen J. Steil: Perspectives on learning with recurrent neural networks. ESANN 2002: 357-368
[c14]Barbara Hammer, Alessio Micheli, Alessandro Sperduti: A general framework for unsupervised processing of structured data. ESANN 2002: 389-394
[c13]Barbara Hammer, Marc Strickert, Thomas Villmann: Learning Vector Quantization for Multimodal Data. ICANN 2002: 370-376
[c12]Barbara Hammer, Andreas Rechtien, Marc Strickert, Thomas Villmann: Rule Extraction from Self-Organizing Networks. ICANN 2002: 877-883
[c11]Peter Tiño, Barbara Hammer: Architectural Bias in Recurrent Neural Networks - Fractal Analysis. ICANN 2002: 1359-1364- 2001
[j3]Barbara Hammer: Generalization Ability of Folding Networks. IEEE Trans. Knowl. Data Eng. 13(2): 196-206 (2001)
[c10]Thorsten Bojer, Barbara Hammer, Daniel Schunk, Katharina Tluk von Toschanowitz: Relevance determination in Learning Vector Quantization. ESANN 2001: 271-276
[c9]
[c8]Marc Strickert, Thorsten Bojer, Barbara Hammer: Generalized Relevance LVQ for Time Series. ICANN 2001: 677-683
[c7]- 2000
[j2]Barbara Hammer: On the approximation capability of recurrent neural networks. Neurocomputing 31(1-4): 107-123 (2000)
[c6]Bhaskar DasGupta, Barbara Hammer: On Approximate Learning by Multi-layered Feedforward Circuits. ALT 2000: 264-278
[c5]
1990 – 1999
- 1999
[j1]
[c4]- 1998
[c3]
[c2]- 1997
[c1]- 1996
[b1]Volker Sperschneider, Barbara Hammer: Theoretische Informatik - eine problemorientierte Einführung. Springer-Lehrbuch, Springer 1996, ISBN 978-3-540-60860-8, pp. I-VIII, 1-193
Coauthor Index
[j56] [j52] [j51] [j49] [c93] [i2] [j44] [j42] [j38] [c84] [c82] [c79] [c78] [c77] [j37] [c74] [c71] [c66] [c65] [p4] [e4] [r1] [j33] [j32] [c62] [c61] [c57] [c55] [p3] [j30] [j29] [c53] [c52] [c47] [c44] [c43] [c42] [c41] [c39] [e2] [j27] [j25] [j24] [j23] [j22] [c38] [c37] [c36] [c35] [c34] [c33] [c32] [c31] [c30] [j20] [j14] [j13] [c28] [c27] [c25] [c24] [c21] [c20] [j7] [c18] [j4] [c16] [c13] [c12] [c9]
data released under the ODC-BY 1.0 license. See also our legal information page
last updated on 2013-10-02 11:11 CEST by the dblp team



