Please note: This is a beta version of the new dblp website.
You can find the classic dblp view of this page here.
You can find the classic dblp view of this page here.
Eyke Hüllermeier
2010 – today
- 2013
[j66]Dominik Heider, Robin Senge, Weiwei Cheng, Eyke Hüllermeier: Multilabel classification for exploiting cross-resistance information in HIV-1 drug resistance prediction. Bioinformatics 29(16): 1946-1952 (2013)
[j65]Ammar Shaker, Robin Senge, Eyke Hüllermeier: Evolving fuzzy pattern trees for binary classification on data streams. Inf. Sci. 220: 34-45 (2013)
[j64]Eyke Hüllermeier, Johannes Fürnkranz: Editorial: Preference learning and ranking. Machine Learning 93(2-3): 185-189 (2013)
[j63]Thomas Fober, Marco Mernberger, Gerhard Klebe, Eyke Hüllermeier: Graph-based methods for protein structure comparison. Wiley Interdisc. Rew.: Data Mining and Knowledge Discovery 3(5): 307-320 (2013)
[c84]Amira Abdel-Aziz, Weiwei Cheng, Marc Strickert, Eyke Hüllermeier: Preference-Based CBR: A Search-Based Problem Solving Framework. ICCBR 2013: 1-14
[c83]Eyke Hüllermeier, Weiwei Cheng: Preference-Based CBR: General Ideas and Basic Principles. IJCAI 2013
[p4]Thomas Fober, Gerhard Klebe, Eyke Hüllermeier: Local Clique Merging: An Extension of the Maximum Common Subgraph Measure with Applications in Structural Bioinformatics. Algorithms from and for Nature and Life 2013: 279-286
[e5]Johannes Fürnkranz, Eyke Hüllermeier, Tomoyuki Higuchi (Eds.): Discovery Science - 16th International Conference, DS 2013, Singapore, October 6-9, 2013. Proceedings. Lecture Notes in Computer Science 8140, Springer 2013, ISBN 978-3-642-40896-0
[i2]Eyke Hüllermeier: Learning from Imprecise and Fuzzy Observations: Data Disambiguation through Generalized Loss Minimization. CoRR abs/1305.0698 (2013)- 2012
[j62]Frank Hoffmann, Eyke Hüllermeier, Andreas Kroll: Ausgewählte Beiträge des GMA-Fachausschusses 5.14 "Computational Intelligence". Automatisierungstechnik 60(10): 587-588 (2012)
[j61]Robin Senge, Thomas Fober, Maryam Nasiri, Eyke Hüllermeier: Fuzzy Pattern Trees: Ein alternativer Ansatz zur Fuzzy-Modellierung. Automatisierungstechnik 60(10): 622-629 (2012)
[j60]Ammar Shaker, Eyke Hüllermeier: IBLStreams: a system for instance-based classification and regression on data streams. Evolving Systems 3(4): 235-249 (2012)
[j59]M. Dolores Ruiz, Eyke Hüllermeier: A formal and empirical analysis of the fuzzy gamma rank correlation coefficient. Inf. Sci. 206: 1-17 (2012)
[j58]Krzysztof Dembczynski, Willem Waegeman, Weiwei Cheng, Eyke Hüllermeier: On label dependence and loss minimization in multi-label classification. Machine Learning 88(1-2): 5-45 (2012)
[j57]Johannes Fürnkranz, Eyke Hüllermeier, Weiwei Cheng, Sang-Hyeun Park: Preference-based reinforcement learning: a formal framework and a policy iteration algorithm. Machine Learning 89(1-2): 123-156 (2012)
[j56]Ali Fallah Tehrani, Weiwei Cheng, Krzysztof Dembczynski, Eyke Hüllermeier: Learning monotone nonlinear models using the Choquet integral. Machine Learning 89(1-2): 183-211 (2012)
[j55]Martin Pyka, A. Balz, A. Jansen, A. Krug, Eyke Hüllermeier: A WEKA Interface for fMRI Data. Neuroinformatics 10(4): 409-413 (2012)
[j54]Humberto Bustince Sola, Miguel Pagola, Radko Mesiar, Eyke Hüllermeier, Francisco Herrera: Grouping, Overlap, and Generalized Bientropic Functions for Fuzzy Modeling of Pairwise Comparisons. IEEE T. Fuzzy Systems 20(3): 405-415 (2012)
[j53]Eyke Hüllermeier, Maria Rifqi, Sascha Henzgen, Robin Senge: Comparing Fuzzy Partitions: A Generalization of the Rand Index and Related Measures. IEEE T. Fuzzy Systems 20(3): 546-556 (2012)
[j52]Ali Fallah Tehrani, Weiwei Cheng, Eyke Hüllermeier: Preference Learning Using the Choquet Integral: The Case of Multipartite Ranking. IEEE T. Fuzzy Systems 20(6): 1102-1113 (2012)
[c82]Krzysztof Dembczynski, Willem Waegeman, Eyke Hüllermeier: An Analysis of Chaining in Multi-Label Classification. ECAI 2012: 294-299
[c81]Krzysztof Dembczynski, Wojciech Kotlowski, Eyke Hüllermeier: Consistent Multilabel Ranking through Univariate Losses. ICML 2012
[c80]Eyke Hüllermeier, Ali Fallah Tehrani: On the VC-Dimension of the Choquet Integral. IPMU (1) 2012: 42-50
[c79]Weiwei Cheng, Eyke Hüllermeier, Willem Waegeman, Volkmar Welker: Label Ranking with Partial Abstention based on Thresholded Probabilistic Models. NIPS 2012: 2510-2518
[c78]Weiwei Cheng, Eyke Hüllermeier: Probability Estimation for Multi-class Classification Based on Label Ranking. ECML/PKDD (2) 2012: 83-98
[c77]Weiwei Cheng, Krzysztof Dembczynski, Eyke Hüllermeier, Adrian Jaroszewicz, Willem Waegeman: F-Measure Maximization in Topical Classification. RSCTC 2012: 439-446
[p3]Eyke Hüllermeier: Fuzzy Rules in Data Mining: From Fuzzy Associations to Gradual Dependencies. Combining Experimentation and Theory 2012: 123-135
[e4]Eyke Hüllermeier, Sebastian Link, Thomas Fober, Bernhard Seeger (Eds.): Scalable Uncertainty Management - 6th International Conference, SUM 2012, Marburg, Germany, September 17-19, 2012. Proceedings. Lecture Notes in Computer Science 7520, Springer 2012, ISBN 978-3-642-33361-3- 2011
[j51]Carmel Domshlak, Eyke Hüllermeier, Souhila Kaci, Henri Prade: Preferences in AI: An overview. Artif. Intell. 175(7-8): 1037-1052 (2011)
[j50]Eyke Hüllermeier: Fuzzy sets in machine learning and data mining. Appl. Soft Comput. 11(2): 1493-1505 (2011)
[j49]Marco Mernberger, Gerhard Klebe, Eyke Hüllermeier: SEGA: Semiglobal Graph Alignment for Structure-Based Protein Comparison. IEEE/ACM Trans. Comput. Biology Bioinform. 8(5): 1330-1343 (2011)
[j48]Thomas Fober, Gerghei Glinca, Gerhard Klebe, Eyke Hüllermeier: Superposition and Alignment of Labeled Point Clouds. IEEE/ACM Trans. Comput. Biology Bioinform. 8(6): 1653-1666 (2011)
[j47]Robin Senge, Eyke Hüllermeier: Top-Down Induction of Fuzzy Pattern Trees. IEEE T. Fuzzy Systems 19(2): 241-252 (2011)
[j46]Eyke Hüllermeier: Fuzzy machine learning and data mining. Wiley Interdisc. Rew.: Data Mining and Knowledge Discovery 1(4): 269-283 (2011)
[c76]
[c75]
[c74]Eyke Hüllermeier, Patrice Schlegel: Preference-Based CBR: First Steps toward a Methodological Framework. ICCBR 2011: 77-91
[c73]Wojciech Kotlowski, Krzysztof Dembczynski, Eyke Hüllermeier: Bipartite Ranking through Minimization of Univariate Loss. ICML 2011: 1113-1120
[c72]Krzysztof Dembczynski, Willem Waegeman, Weiwei Cheng, Eyke Hüllermeier: An Exact Algorithm for F-Measure Maximization. NIPS 2011: 1404-1412
[c71]Weiwei Cheng, Johannes Fürnkranz, Eyke Hüllermeier, Sang-Hyeun Park: Preference-Based Policy Iteration: Leveraging Preference Learning for Reinforcement Learning. ECML/PKDD (1) 2011: 312-327
[c70]Ali Fallah Tehrani, Weiwei Cheng, Krzysztof Dembczynski, Eyke Hüllermeier: Learning Monotone Nonlinear Models Using the Choquet Integral. ECML/PKDD (3) 2011: 414-429
[i1]Weiwei Cheng, Eyke Hüllermeier: Label Ranking with Abstention: Predicting Partial Orders by Thresholding Probability Distributions (Extended Abstract). CoRR abs/1112.0508 (2011)- 2010
[j45]Eyke Hüllermeier, Johannes Fürnkranz: On predictive accuracy and risk minimization in pairwise label ranking. J. Comput. Syst. Sci. 76(1): 49-62 (2010)
[j44]Eyke Hüllermeier, Stijn Vanderlooy: Combining predictions in pairwise classification: An optimal adaptive voting strategy and its relation to weighted voting. Pattern Recognition 43(1): 128-142 (2010)
[c69]Thomas Fober, Eyke Hüllermeier: Similarity measures for protein structures based on fuzzy histogram comparison. FUZZ-IEEE 2010: 1-7
[c68]Robin Senge, Eyke Hüllermeier: Pattern trees for regression and fuzzy systems modeling. FUZZ-IEEE 2010: 1-7
[c67]Thomas Fober, Marco Mernberger, Gerhard Klebe, Eyke Hüllermeier: Efficient Similarity Retrieval of Protein Binding Sites based on Histogram Comparison. GCB 2010: 51-59
[c66]Weiwei Cheng, Krzysztof Dembczynski, Eyke Hüllermeier: Label Ranking Methods based on the Plackett-Luce Model. ICML 2010: 215-222
[c65]Weiwei Cheng, Krzysztof Dembczynski, Eyke Hüllermeier: Graded Multilabel Classification: The Ordinal Case. ICML 2010: 223-230
[c64]Krzysztof Dembczynski, Weiwei Cheng, Eyke Hüllermeier: Bayes Optimal Multilabel Classification via Probabilistic Classifier Chains. ICML 2010: 279-286
[c63]Weiwei Cheng, Michaël Rademaker, Bernard De Baets, Eyke Hüllermeier: Predicting Partial Orders: Ranking with Abstention. ECML/PKDD (1) 2010: 215-230
[c62]Krzysztof Dembczynski, Willem Waegeman, Weiwei Cheng, Eyke Hüllermeier: Regret Analysis for Performance Metrics in Multi-Label Classification: The Case of Hamming and Subset Zero-One Loss. ECML/PKDD (1) 2010: 280-295
[c61]
[p2]Jens Christian Hühn, Eyke Hüllermeier: An Analysis of the FURIA Algorithm for Fuzzy Rule Induction. Advances in Machine Learning I 2010: 321-344
[e3]Eyke Hüllermeier, Rudolf Kruse, Frank Hoffmann (Eds.): Information Processing and Management of Uncertainty in Knowledge-Based Systems. Theory and Methods - 13th International Conference, IPMU 2010, Dortmund, Germany, June 28 - July 2, 2010. Proceedings, Part I. Communications in Computer and Information Science 80, Springer 2010, ISBN 978-3-642-14054-9
[e2]Eyke Hüllermeier, Rudolf Kruse, Frank Hoffmann (Eds.): Information Processing and Management of Uncertainty in Knowledge-Based Systems. Applications - 13th International Conference, IPMU 2010, Dortmund, Germany, June 28 - July 2, 2010. Proceedings, Part II. Communications in Computer and Information Science 81, Springer 2010, ISBN 978-3-642-14057-0
[e1]Eyke Hüllermeier, Rudolf Kruse, Frank Hoffmann (Eds.): Computational Intelligence for Knowledge-Based Systems Design, 13th International Conference on Information Processing and Management of Uncertainty, IPMU 2010, Dortmund, Germany, June 28 - July 2, 2010. Proceedings. Lecture Notes in Computer Science 6178, Springer 2010, ISBN 978-3-642-14048-8
[r2]Johannes Fürnkranz, Eyke Hüllermeier: Preference Learning. Encyclopedia of Machine Learning 2010: 789-795
2000 – 2009
- 2009
[j43]Thomas Fober, Marco Mernberger, Gerhard Klebe, Eyke Hüllermeier: Evolutionary construction of multiple graph alignments for the structural analysis of biomolecules. Bioinformatics 25(16): 2110-2117 (2009)
[j42]Jens Christian Hühn, Eyke Hüllermeier: FURIA: an algorithm for unordered fuzzy rule induction. Data Min. Knowl. Discov. 19(3): 293-319 (2009)
[j41]Eyke Hüllermeier, Michael M. Richter, Rosina Weber: Prelude to the papers "Fuzzy case based reasoning for facial expression recognition" and "Temporal similarity by measuring possibilistic uncertainty in CBR". Fuzzy Sets and Systems 160(2): 212-213 (2009)
[j40]Yu Yi, Thomas Fober, Eyke Hüllermeier: Fuzzy Operator Trees for Modeling Rating Functions. International Journal of Computational Intelligence and Applications 8(4): 413-428 (2009)
[j39]Eyke Hüllermeier, Ilya Vladimirskiy, Belén Prados-Suárez, Eva Stauch: Supporting Case-Based Retrieval by Similarity Skyline. KI 23(1): 24-29 (2009)
[j38]Weiwei Cheng, Eyke Hüllermeier: Combining instance-based learning and logistic regression for multilabel classification. Machine Learning 76(2-3): 211-225 (2009)
[j37]Jens C. Huhn, Eyke Hüllermeier: FR3: A Fuzzy Rule Learner for Inducing Reliable Classifiers. IEEE T. Fuzzy Systems 17(1): 138-149 (2009)
[j36]Eyke Hüllermeier, Stijn Vanderlooy: Why Fuzzy Decision Trees are Good Rankers. IEEE T. Fuzzy Systems 17(6): 1233-1244 (2009)
[c60]Eyke Hüllermeier, Maria Rifqi: A Fuzzy Variant of the Rand Index for Comparing Clustering Structures. IFSA/EUSFLAT Conf. 2009: 1294-1298
[c59]Thomas Fober, Eyke Hüllermeier: Fuzzy Modeling of Labeled Point Cloud Superposition for the Comparison of Protein Binding Sites. IFSA/EUSFLAT Conf. 2009: 1299-1304
[c58]Thomas Fober, Marco Mernberger, Ralph Moritz, Eyke Hüllermeier: Graph-Kernels for the Comparative Analysis of Protein Active Sites. GCB 2009: 21-31
[c57]Weiwei Cheng, Jens C. Huhn, Eyke Hüllermeier: Decision tree and instance-based learning for label ranking. ICML 2009: 21
[c56]Imen Boukhris, Zied Elouedi, Thomas Fober, Marco Mernberger, Eyke Hüllermeier: Similarity Analysis of Protein Binding Sites: A Generalization of the Maximum Common Subgraph Measure Based on Quasi-Clique Detection. ISDA 2009: 1245-1250
[c55]Thomas Fober, Gerhard Klebe, Eyke Hüllermeier: Efficient Construction of Multiple Geometrical Alignments for the Comparison of Protein Binding Sites. ISDA 2009: 1251-1256
[c54]Weiwei Cheng, Eyke Hüllermeier: A New Instance-Based Label Ranking Approach Using the Mallows Model. ISNN (1) 2009: 707-716
[c53]Weiwei Cheng, Eyke Hüllermeier: Combining Instance-Based Learning and Logistic Regression for Multilabel Classification. ECML/PKDD (1) 2009: 6
[c52]Johannes Fürnkranz, Eyke Hüllermeier, Stijn Vanderlooy: Binary Decomposition Methods for Multipartite Ranking. ECML/PKDD (1) 2009: 359-374
[r1]Eyke Hüllermeier: Fuzzy Methods in Data Mining. Encyclopedia of Data Warehousing and Mining 2009: 907-912- 2008
[j35]Eyke Hüllermeier, Johannes Fürnkranz, Weiwei Cheng, Klaus Brinker: Label ranking by learning pairwise preferences. Artif. Intell. 172(16-17): 1897-1916 (2008)
[j34]Eyke Hüllermeier, Klaus Brinker: Learning valued preference structures for solving classification problems. Fuzzy Sets and Systems 159(18): 2337-2352 (2008)
[j33]Jens C. Huhn, Eyke Hüllermeier: Is an ordinal class structure useful in classifier learning? IJDMMM 1(1): 45-67 (2008)
[j32]Jürgen Beringer, Eyke Hüllermeier: Case-based learning in a bipolar possibilistic framework. Int. J. Intell. Syst. 23(10): 1119-1134 (2008)
[j31]Stijn Vanderlooy, Eyke Hüllermeier: A critical analysis of variants of the AUC. Machine Learning 72(3): 247-262 (2008)
[j30]Johannes Fürnkranz, Eyke Hüllermeier, Eneldo Loza Mencía, Klaus Brinker: Multilabel classification via calibrated label ranking. Machine Learning 73(2): 133-153 (2008)
[c51]Eyke Hüllermeier, Michael M. Richter, Rosina Weber, Kerstin Bach, Miltos Petridis: Preface: Uncertainty, Similarity, and Knowledge Discovery in CBR. ECCBR Workshops 2008: 117-118
[c50]Weiwei Cheng, Eyke Hüllermeier: Learning Similarity Functions from Qualitative Feedback. ECCBR 2008: 120-134
[c49]Weiwei Cheng, Eyke Hüllermeier: Instance-Based Label Ranking using the Mallows Model. ECCBR Workshops 2008: 143-157
[c48]Eyke Hüllermeier, Ilya Vladimirskiy, Belén Prados-Suárez, Eva Stauch: Supporting Case-Based Retrieval by Similarity Skylines: Basic Concepts and Extensions. ECCBR 2008: 240-254
[c47]Thomas Fober, Eyke Hüllermeier, Marco Mernberger: Evolutionary Construction of Multiple Graph Alignments for the Structural Analysis of Biomolecules. German Conference on Bioinformatics 2008: 44-53
[c46]Thomas Fober, Eyke Hüllermeier, Marco Mernberger: Evolutionary Construction of Multiple Graph Alignments for Mining Structured Biomolecular Data. LWA 2008: 27-33
[c45]Eyke Hüllermeier, Stijn Vanderlooy: Weighted Voting as Approximate MAP Prediction in Pairwise Classification. LWA 2008: 34-41
[c44]Stijn Vanderlooy, Eyke Hüllermeier: A Critical Analysis of Variants of the AUC. ECML/PKDD (1) 2008: 13
[p1]Eyke Hüllermeier: Fuzzy Methods for Data Mining and Machine Learning: State ofthe Art and Prospects. Fuzzy Sets and Their Extensions: Representation, Aggregation and Models 2008: 357-375- 2007
[b1]Eyke Hüllermeier: Case-Based Approximate Reasoning. Theory and Decision Library 44, Springer 2007, ISBN 978-1-4020-5694-9
[j29]Iman Karimi, Eyke Hüllermeier: Risk assessment system of natural hazards: A new approach based on fuzzy probability. Fuzzy Sets and Systems 158(9): 987-999 (2007)
[j28]Jürgen Beringer, Eyke Hüllermeier: Efficient instance-based learning on data streams. Intell. Data Anal. 11(6): 627-650 (2007)
[j27]Didier Dubois, Eyke Hüllermeier: Comparing probability measures using possibility theory: A notion of relative peakedness. Int. J. Approx. Reasoning 45(2): 364-385 (2007)
[j26]Eyke Hüllermeier, Frank Klawonn, Andreas Nürnberger: Editorial. International Journal of Uncertainty, Fuzziness and Knowledge-Based Systems 15(5) (2007)
[j25]Iman Karimi, Eyke Hüllermeier, Konstantin Meskouris: A fuzzy-probabilistic earthquake risk assessment system. Soft Comput. 11(3): 229-238 (2007)
[j24]Ulrich Bodenhofer, Eyke Hüllermeier, Frank Klawonn, Rudolf Kruse: Special Issue on Soft Computing for Information Mining. Soft Comput. 11(5): 397-399 (2007)
[j23]Nils Weskamp, Eyke Hüllermeier, Daniel Kuhn, Gerhard Klebe: Multiple Graph Alignment for the Structural Analysis of Protein Active Sites. IEEE/ACM Trans. Comput. Biology Bioinform. 4(2): 310-320 (2007)
[j22]Eyke Hüllermeier: Credible Case-Based Inference Using Similarity Profiles. IEEE Trans. Knowl. Data Eng. 19(6): 847-858 (2007)
[j21]Eyke Hüllermeier, Y. Yi: In Defense of Fuzzy Association Analysis. IEEE Transactions on Systems, Man, and Cybernetics, Part B 37(4): 1039-1043 (2007)
[c43]Jan-Nikolas Sulzmann, Johannes Fürnkranz, Eyke Hüllermeier: On Pairwise Naive Bayes Classifiers. ECML 2007: 371-381
[c42]Eyke Hüllermeier, Johannes Fürnkranz: On Minimizing the Position Error in Label Ranking. ECML 2007: 583-590
[c41]Eyke Hüllermeier, Klaus Brinker: Fuzzy-Relational Classification: Combining Pairwise Decomposition Techniques with Fuzzy Preference Modeling. EUSFLAT Conf. (1) 2007: 353-360
[c40]Jürgen Beringer, Eyke Hüllermeier: Adaptive Optimization of the Number of Clusters in Fuzzy Clustering. FUZZ-IEEE 2007: 1-6
[c39]Eyke Hüllermeier, Nils Weskamp, Gerhard Klebe, Daniel Kuhn: Graph Alignment: Fuzzy Pattern Mining for the Structural Analysis of Protein Active Sites. FUZZ-IEEE 2007: 1-6
[c38]
[c37]
[c36]Jürgen Beringer, Eyke Hüllermeier: An Efficient Algorithm for Instance-Based Learning on Data Streams. Industrial Conference on Data Mining 2007: 34-48
[c35]Weiwei Cheng, Eyke Hüllermeier, Bernhard Seeger, Ilya Vladimirskiy: Interactive Ranking of Skylines Using Machine Learning Techniques. LWA 2007: 141-148- 2006
[j20]Didier Dubois, Eyke Hüllermeier, Henri Prade: A systematic approach to the assessment of fuzzy association rules. Data Min. Knowl. Discov. 13(2): 167-192 (2006)
[j19]Jürgen Beringer, Eyke Hüllermeier: Online clustering of parallel data streams. Data Knowl. Eng. 58(2): 180-204 (2006)
[j18]Eyke Hüllermeier, Jürgen Beringer: Learning from ambiguously labeled examples. Intell. Data Anal. 10(5): 419-439 (2006)
[j17]Didier Dubois, Eyke Hüllermeier, Henri Prade: Fuzzy methods for case-based recommendation and decision support. J. Intell. Inf. Syst. 27(2): 95-115 (2006)
[c34]Klaus Brinker, Johannes Fürnkranz, Eyke Hüllermeier: A Unified Model for Multilabel Classification and Ranking. ECAI 2006: 489-493
[c33]
[c32]Korinna Bade, Eyke Hüllermeier, Andreas Nürnberger: Hierarchical Classification by Expected Utility Maximization. ICDM 2006: 43-52- 2005
[j16]Rajarajeswari Balasubramaniyan, Eyke Hüllermeier, Nils Weskamp, Jörg Kämper: Clustering of gene expression data using a local shape-based similarity measure. Bioinformatics 21(7): 1069-1077 (2005)
[j15]Eyke Hüllermeier: Special issue on fuzzy sets in knowledge discovery. Fuzzy Sets and Systems 149(1): 1-3 (2005)
[j14]Eyke Hüllermeier: Fuzzy methods in machine learning and data mining: Status and prospects. Fuzzy Sets and Systems 156(3): 387-406 (2005)
[j13]
[j12]Eyke Hüllermeier: Experience-Based Decision Making: A Satisficing Decision Tree Approach. IEEE Transactions on Systems, Man, and Cybernetics, Part A 35(5): 641-653 (2005)
[c31]Didier Dubois, Eyke Hüllermeier: A Notion of Comparative Probabilistic Entropy Based on the Possibilistic Specificity Ordering. ECSQARU 2005: 848-859
[c30]Edwin Lughofer, Eyke Hüllermeier, Erich-Peter Klement: Improving the interpretability of data-driven evolving fuzzy systems. EUSFLAT Conf. 2005: 28-33
[c29]Yu Yi, Eyke Hüllermeier: Learning Complexity-Bounded Rule-Based Classifiers by Combining. Association Analysis and Genetic Algorithms. EUSFLAT Conf. 2005: 47-52
[c28]
[c27]Eyke Hüllermeier, Johannes Fürnkranz: Learning Label Preferences: Ranking Error Versus Position Error. IDA 2005: 180-191
[c26]Eyke Hüllermeier: Cho-k-NN: A Method for Combining Interacting Pieces of Evidence in Case-Based Learning. IJCAI 2005: 3-8
[c25]Eyke Hüllermeier, Johannes Fürnkranz, Jürgen Beringer: On Position Error and Label Ranking through Iterated Choice. LWA 2005: 158-163- 2004
[j11]Nils Weskamp, Daniel Kuhn, Eyke Hüllermeier, Gerhard Klebe: Efficient similarity search in protein structure databases by k-clique hashing. Bioinformatics 20(10): 1522-1526 (2004)
[j10]Eyke Hüllermeier: Flexible constraints for regularization in learning from data. Int. J. Intell. Syst. 19(6): 525-541 (2004)
[j9]
[c24]
[c23]
[c22]Nils Weskamp, Eyke Hüllermeier, Daniel Kuhn, Gerhard Klebe: Graph Alignments: A New Concept to Detect Conserved Regions in Protein Active Sites. German Conference on Bioinformatics 2004: 131-140- 2003
[j8]
[j7]Martine de Calmès, Didier Dubois, Eyke Hüllermeier, Henri Prade, Florence Sedes: Flexibility and Fuzzy Case-Based Evaluation in Querying: An Illustration in an Experimental Setting. International Journal of Uncertainty, Fuzziness and Knowledge-Based Systems 11(1): 43-66 (2003)
[j6]Didier Dubois, Eyke Hüllermeier, Henri Prade: On the representation of fuzzy rules in terms of crisp rules. Inf. Sci. 151: 301-326 (2003)
[c21]
[c20]Eyke Hüllermeier: Instance-based collaborative filtering with fuzzy labels. EUSFLAT Conf. 2003: 468-473
[c19]Nils Weskamp, Daniel Kuhn, Eyke Hüllermeier, Gerhard Klebe: Efficient Similarity Search in Protein Structure Databases: Improving Cliqae-Detection through Clique Hashing. German Conference on Bioinformatics 2003: 179-184
[c18]
[c17]Didier Dubois, Eyke Hüllermeier, Henri Prade: A Note on Quality Measures for Fuzzy Asscociation Rules. IFSA 2003: 346-353
[c16]Eyke Hüllermeier: Inducing Fuzzy Concepts through Extended Version Space Learning. IFSA 2003: 677-684
[c15]- 2002
[j5]Didier Dubois, Eyke Hüllermeier, Henri Prade: Fuzzy set-based methods in instance-based reasoning. IEEE T. Fuzzy Systems 10(3): 322-332 (2002)
[j4]Eyke Hüllermeier, Didier Dubois, Henri Prade: Model adaptation in possibilistic instance-based reasoning. IEEE T. Fuzzy Systems 10(3): 333-339 (2002)
[c14]Eyke Hüllermeier: On the Representation and Combination of Evidence in Instance-Based Learning. ECAI 2002: 360-364
[c13]
[c12]Martine de Calmès, Didier Dubois, Eyke Hüllermeier, Henri Prade, Florence Sedes: A Fuzzy Approach to Flexible Case-based Querying: Methodology and Experimentation. KR 2002: 449-458
[c11]- 2001
[j3]Eyke Hüllermeier: Similarity-based inference as evidential reasoning. Int. J. Approx. Reasoning 26(2): 67-100 (2001)
[c10]Eyke Hüllermeier: Fuzzy Association Rules: Semantic Issues and Quality Measures. Fuzzy Days 2001: 380-391
[c9]- 2000
[c8]
[c7]
[c6]
[c5]Didier Dubois, Eyke Hüllermeier, Henri Prade: Flexible Control of Case-Based Prediction in the Framework of Possibility Theory. EWCBR 2000: 61-73
[c4]Eyke Hüllermeier: A Method for Predicting Solutions in Case-Based Problem Solving. EWCBR 2000: 124-135
1990 – 1999
- 1999
[j2]Eyke Hüllermeier: Numerical Methods for Fuzzy Initial Value Problems. International Journal of Uncertainty, Fuzziness and Knowledge-Based Systems 7(5): 439-461 (1999)
[c3]Eyke Hüllermeier: A Possibilistic Formalization of Case-Based Reasoning and Decision Making. Fuzzy Days 1999: 411-420
[c2]Eyke Hüllermeier: Exploiting Similarity for Supporting Data Analysis and Problem Solving. IDA 1999: 257-268
[c1]- 1997
[j1]Eyke Hüllermeier: An Approach to Modelling and Simulation of Uncertain Dynamical Systems. International Journal of Uncertainty, Fuzziness and Knowledge-Based Systems 5(2): 117-138 (1997)
Coauthor Index
data released under the ODC-BY 1.0 license. See also our legal information page
last updated on 2013-10-02 11:19 CEST by the dblp team



