Please note: This is a beta version of the new dblp website.
You can find the classic dblp view of this page here.
You can find the classic dblp view of this page here.
Stephan Günnemann
2010 – today
- 2013
[c36]
[c35]Jennifer H. Nguyen, Bo Hu, Stephan Günnemann, Martin Ester: Finding contexts of social influence in online social networks. SNAKDD 2013: 1
[c34]Geng Li, Stephan Günnemann, Mohammed J. Zaki: Stochastic subspace search for top-k multi-view clustering. MultiClust@KDD 2013: 3
[c33]Stephan Günnemann, Brigitte Boden, Ines Färber, Thomas Seidl: Efficient Mining of Combined Subspace and Subgraph Clusters in Graphs with Feature Vectors. PAKDD (1) 2013: 261-275
[c32]Brigitte Boden, Stephan Günnemann, Holger Hoffmann, Thomas Seidl: RMiCS: a robust approach for mining coherent subgraphs in edge-labeled multi-layer graphs. SSDBM 2013: 23
[c31]Hardy Kremer, Stephan Günnemann, Simon Wollwage, Thomas Seidl: Nesting the earth mover's distance for effective cluster tracing. SSDBM 2013: 34- 2012
[j4]Stephan Günnemann, Hardy Kremer, Charlotte Laufkötter, Thomas Seidl: Tracing Evolving Subspace Clusters in Temporal Climate Data. Data Min. Knowl. Discov. 24(2): 387-410 (2012)
[j3]Stephan Günnemann, Brigitte Boden, Thomas Seidl: Finding density-based subspace clusters in graphs with feature vectors. Data Min. Knowl. Discov. 25(2): 243-269 (2012)
[c30]Brigitte Boden, Stephan Günnemann, Thomas Seidl: Tracing clusters in evolving graphs with node attributes. CIKM 2012: 2331-2334
[c29]Emmanuel Müller, Stephan Günnemann, Ines Färber, Thomas Seidl: Discovering Multiple Clustering Solutions: Grouping Objects in Different Views of the Data. ICDE 2012: 1207-1210
[c28]Stephan Günnemann, Phuong Dao, Mohsen Jamali, Martin Ester: Assessing the Significance of Data Mining Results on Graphs with Feature Vectors. ICDM 2012: 270-279
[c27]Hardy Kremer, Stephan Günnemann, Arne Held, Thomas Seidl: Effective and Robust Mining of Temporal Subspace Clusters. ICDM 2012: 369-378
[c26]Stephan Günnemann, Hardy Kremer, Richard Musiol, Roman Haag, Thomas Seidl: A Subspace Clustering Extension for the KNIME Data Mining Framework. ICDM Workshops 2012: 886-889
[c25]Stephan Günnemann, Ines Färber, Thomas Seidl: Multi-view clustering using mixture models in subspace projections. KDD 2012: 132-140
[c24]Stephan Günnemann, Ines Färber, Kittipat Virochsiri, Thomas Seidl: Subspace correlation clustering: finding locally correlated dimensions in subspace projections of the data. KDD 2012: 352-360
[c23]Brigitte Boden, Stephan Günnemann, Holger Hoffmann, Thomas Seidl: Mining coherent subgraphs in multi-layer graphs with edge labels. KDD 2012: 1258-1266
[c22]Hardy Kremer, Stephan Günnemann, Arne Held, Thomas Seidl: Mining of Temporal Coherent Subspace Clusters in Multivariate Time Series Databases. PAKDD (1) 2012: 444-455
[c21]Stephan Günnemann, Brigitte Boden, Thomas Seidl: Substructure Clustering: A Novel Mining Paradigm for Arbitrary Data Types. SSDBM 2012: 280-297- 2011
[c20]Emmanuel Müller, Ira Assent, Stephan Günnemann, Patrick Gerwert, Matthias Hannen, Timm Jansen, Thomas Seidl: A Framework for Evaluation and Exploration of Clustering Algorithms in Subspaces of High Dimensional Databases. BTW 2011: 347-366
[c19]Emmanuel Müller, Ira Assent, Stephan Günnemann, Thomas Seidl: Scalable density-based subspace clustering. CIKM 2011: 1077-1086
[c18]Stephan Günnemann, Ines Färber, Emmanuel Müller, Ira Assent, Thomas Seidl: External evaluation measures for subspace clustering. CIKM 2011: 1363-1372
[c17]Stephan Günnemann, Hardy Kremer, Dominik Lenhard, Thomas Seidl: Subspace clustering for indexing high dimensional data: a main memory index based on local reductions and individual multi-representations. EDBT 2011: 237-248
[c16]Stephan Günnemann, Emmanuel Müller, Sebastian Raubach, Thomas Seidl: Flexible Fault Tolerant Subspace Clustering for Data with Missing Values. ICDM 2011: 231-240
[c15]Stephan Günnemann, Hardy Kremer, Charlotte Laufkötter, Thomas Seidl: Tracing Evolving Clusters by Subspace and Value Similarity. PAKDD (2) 2011: 444-456
[c14]Stephan Günnemann, Brigitte Boden, Thomas Seidl: DB-CSC: A Density-Based Approach for Subspace Clustering in Graphs with Feature Vectors. ECML/PKDD (1) 2011: 565-580
[c13]Hardy Kremer, Stephan Günnemann, Anca Maria Ivanescu, Ira Assent, Thomas Seidl: Efficient Processing of Multiple DTW Queries in Time Series Databases. SSDBM 2011: 150-167
[e1]Emmanuel Müller, Stephan Günnemann, Ira Assent, Thomas Seidl (Eds.): Proceedings of the 2nd MultiClust Workshop: Discovering, Summarizing and Using Multiple Clusterings, Athens, Greece, September 5, 2011, in conjunction with ECML/PKDD 2011. CEUR Workshop Proceedings 772, CEUR-WS.org 2011- 2010
[j2]Stephan Günnemann, Ines Färber, Hardy Kremer, Thomas Seidl: CoDA: Interactive Cluster Based Concept Discovery. PVLDB 3(2): 1633-1636 (2010)
[c12]Ira Assent, Hardy Kremer, Stephan Günnemann, Thomas Seidl: Pattern detector: fast detection of suspicious stream patterns for immediate reaction. EDBT 2010: 709-712
[c11]Hardy Kremer, Stephan Günnemann, Thomas Seidl: Detecting Climate Change in Multivariate Time Series Data by Novel Clustering and Cluster Tracing Techniques. ICDM Workshops 2010: 96-97
[c10]Stephan Günnemann, Ines Färber, Brigitte Boden, Thomas Seidl: Subspace Clustering Meets Dense Subgraph Mining: A Synthesis of Two Paradigms. ICDM 2010: 845-850
[c9]Emmanuel Müller, Stephan Günnemann, Ines Färber, Thomas Seidl: Discovering Multiple Clustering Solutions: Grouping Objects in Different Views of the Data. ICDM 2010: 1220
[c8]Stephan Günnemann, Hardy Kremer, Ines Färber, Thomas Seidl: MCExplorer: Interactive Exploration of Multiple (Subspace) Clustering Solutions. ICDM Workshops 2010: 1387-1390
[c7]Stephan Günnemann, Thomas Seidl: Subgraph Mining on Directed and Weighted Graphs. PAKDD (2) 2010: 133-146
[c6]Stephan Günnemann, Hardy Kremer, Thomas Seidl: Subspace Clustering for Uncertain Data. SDM 2010: 385-396
[c5]Philipp Kranen, Stephan Günnemann, Sergej Fries, Thomas Seidl: MC-Tree: Improving Bayesian Anytime Classification. SSDBM 2010: 252-269
2000 – 2009
- 2009
[j1]Emmanuel Müller, Stephan Günnemann, Ira Assent, Thomas Seidl: Evaluating Clustering in Subspace Projections of High Dimensional Data. PVLDB 2(1): 1270-1281 (2009)
[c4]Ira Assent, Stephan Günnemann, Hardy Kremer, Thomas Seidl: High-Dimensional Indexing for Multimedia Features. BTW 2009: 187-206
[c3]Stephan Günnemann, Emmanuel Müller, Ines Färber, Thomas Seidl: Detection of orthogonal concepts in subspaces of high dimensional data. CIKM 2009: 1317-1326
[c2]Emmanuel Müller, Ira Assent, Stephan Günnemann, Ralph Krieger, Thomas Seidl: Relevant Subspace Clustering: Mining the Most Interesting Non-redundant Concepts in High Dimensional Data. ICDM 2009: 377-386
[c1]Emmanuel Müller, Ira Assent, Ralph Krieger, Stephan Günnemann, Thomas Seidl: DensEst: Density Estimation for Data Mining in High Dimensional Spaces. SDM 2009: 173-184
Coauthor Index
data released under the ODC-BY 1.0 license. See also our legal information page
last updated on 2013-10-02 11:20 CEST by the dblp team



