Please note: This is a beta version of the new dblp website.
You can find the classic dblp view of this page here.
You can find the classic dblp view of this page here.
Johannes Fürnkranz
2010 – today
- 2013
[j26]Eyke Hüllermeier, Johannes Fürnkranz: Editorial: Preference learning and ranking. Machine Learning 93(2-3): 185-189 (2013)
[e5]Johannes Fürnkranz, Eyke Hüllermeier, Tomoyuki Higuchi (Eds.): Discovery Science - 16th International Conference, DS 2013, Singapore, October 6-9, 2013. Proceedings. Lecture Notes in Computer Science 8140, Springer 2013, ISBN 978-3-642-40896-0- 2012
[b1]Johannes Fürnkranz, Dragan Gamberger, Nada Lavrac: Foundations of Rule Learning. Cognitive Technologies, Springer 2012, ISBN 978-3-540-75196-0, pp. 1-298
[j25]Sang-Hyeun Park, Johannes Fürnkranz: Efficient prediction algorithms for binary decomposition techniques. Data Min. Knowl. Discov. 24(1): 40-77 (2012)
[j24]Johannes Fürnkranz, Eyke Hüllermeier, Weiwei Cheng, Sang-Hyeun Park: Preference-based reinforcement learning: a formal framework and a policy iteration algorithm. Machine Learning 89(1-2): 123-156 (2012)
[c55]Johannes Fürnkranz, Sang-Hyeun Park: Error-Correcting Output Codes as a Transformation from Multi-Class to Multi-Label Prediction. Discovery Science 2012: 254-267
[c54]Wouter Duivesteijn, Eneldo Loza Mencía, Johannes Fürnkranz, Arno J. Knobbe: Multi-label LeGo - Enhancing Multi-label Classifiers with Local Patterns. IDA 2012: 114-125
[c53]Heiko Paulheim, Johannes Fürnkranz: Unsupervised generation of data mining features from linked open data. WIMS 2012: 31- 2011
[j23]Lars Wohlrab, Johannes Fürnkranz: A review and comparison of strategies for handling missing values in separate-and-conquer rule learning. J. Intell. Inf. Syst. 36(1): 73-98 (2011)
[c52]
[c51]
[c50]Jan-Nikolas Sulzmann, Johannes Fürnkranz: Rule Stacking: An Approach for Compressing an Ensemble of Rule Sets into a Single Classifier. Discovery Science 2011: 323-334
[c49]Frederik Janssen, Johannes Fürnkranz: Heuristic Rule-Based Regression via Dynamic Reduction to Classification. IJCAI 2011: 1330-1335
[c48]Weiwei Cheng, Johannes Fürnkranz, Eyke Hüllermeier, Sang-Hyeun Park: Preference-Based Policy Iteration: Leveraging Preference Learning for Reinforcement Learning. ECML/PKDD (1) 2011: 312-327- 2010
[j22]Marco Ghiglieri, Johannes Fürnkranz: Learning to Recognize Missing E-Mail Attachments. Applied Artificial Intelligence 24(5): 443-462 (2010)
[j21]Johannes Fürnkranz, Arno J. Knobbe: Guest Editorial: Global modeling using local patterns. Data Min. Knowl. Discov. 21(1): 1-8 (2010)
[j20]Eneldo Loza Mencía, Sang-Hyeun Park, Johannes Fürnkranz: Efficient voting prediction for pairwise multilabel classification. Neurocomputing 73(7-9): 1164-1176 (2010)
[j19]Eyke Hüllermeier, Johannes Fürnkranz: On predictive accuracy and risk minimization in pairwise label ranking. J. Comput. Syst. Sci. 76(1): 49-62 (2010)
[j18]Frederik Janssen, Johannes Fürnkranz: On the quest for optimal rule learning heuristics. Machine Learning 78(3): 343-379 (2010)
[j17]Johannes Fürnkranz, Jan Frederik Sima: On exploiting hierarchical label structure with pairwise classifiers. SIGKDD Explorations 12(2): 21-25 (2010)
[c47]Sang-Hyeun Park, Lorenz Weizsäcker, Johannes Fürnkranz: Exploiting Code Redundancies in ECOC. Discovery Science 2010: 266-280
[c46]Eneldo Loza Mencía, Johannes Fürnkranz: Efficient Multilabel Classification Algorithms for Large-Scale Problems in the Legal Domain. Semantic Processing of Legal Texts 2010: 192-215
[p3]
[p2]Nada Lavrac, Johannes Fürnkranz, Dragan Gamberger: Explicit Feature Construction and Manipulation for Covering Rule Learning Algorithms. Advances in Machine Learning I 2010: 121-146
[e4]Johannes Fürnkranz, Thorsten Joachims (Eds.): Proceedings of the 27th International Conference on Machine Learning (ICML-10), June 21-24, 2010, Haifa, Israel. Omnipress 2010, ISBN 978-1-60558-907-7
[r7]
[r6]Johannes Fürnkranz: Decision Lists and Decision Trees. Encyclopedia of Machine Learning 2010: 261-262
[r5]
[r4]Johannes Fürnkranz: Machine Learning and Game Playing. Encyclopedia of Machine Learning 2010: 633-637
[r3]Johannes Fürnkranz, Eyke Hüllermeier: Preference Learning. Encyclopedia of Machine Learning 2010: 789-795
[r2]
[r1]
2000 – 2009
- 2009
[c45]Jan-Nikolas Sulzmann, Johannes Fürnkranz: An Empirical Comparison of Probability Estimation Techniques for Probabilistic Rules. Discovery Science 2009: 317-331
[c44]Eneldo Loza Mencía, Sang-Hyeun Park, Johannes Fürnkranz: Efficient voting prediction for pairwise multilabel classification. ESANN 2009
[c43]Immanuel Schweizer, Kamill Panitzek, Sang-Hyeun Park, Johannes Fürnkranz: An Exploitative Monte-Carlo Poker Agent. KI 2009: 65-72
[c42]Sang-Hyeun Park, Johannes Fürnkranz: Efficient Decoding of Ternary Error-Correcting Output Codes for Multiclass Classification. ECML/PKDD (2) 2009: 189-204
[c41]Johannes Fürnkranz, Eyke Hüllermeier, Stijn Vanderlooy: Binary Decomposition Methods for Multipartite Ranking. ECML/PKDD (1) 2009: 359-374
[c40]Frederik Janssen, Johannes Fürnkranz: A Re-evaluation of the Over-Searching Phenomenon in Inductive Rule Learning. SDM 2009: 329-340- 2008
[j16]Eyke Hüllermeier, Johannes Fürnkranz, Weiwei Cheng, Klaus Brinker: Label ranking by learning pairwise preferences. Artif. Intell. 172(16-17): 1897-1916 (2008)
[j15]Sacha Droste, Johannes Fürnkranz: Learning the Piece Values for Three Chess Variants. ICGA Journal 31(4): 209-233 (2008)
[j14]Johannes Fürnkranz, Eyke Hüllermeier, Eneldo Loza Mencía, Klaus Brinker: Multilabel classification via calibrated label ranking. Machine Learning 73(2): 133-153 (2008)
[c39]Frederik Janssen, Johannes Fürnkranz: An Empirical Investigation of the Trade-Off between Consistency and Coverage in Rule Learning Heuristics. Discovery Science 2008: 40-51
[c38]Eneldo Loza Mencía, Johannes Fürnkranz: Pairwise learning of multilabel classifications with perceptrons. IJCNN 2008: 2899-2906
[c37]Frederik Janssen, Johannes Fürnkranz: A Re-evaluation of the Over-Searching Phenomenon in Inductive Rule Learning. LWA 2008: 42-49
[c36]Jan-Nikolas Sulzmann, Johannes Fürnkranz: A Comparison of Techniques for Selecting and Combining Class Association Rules. LWA 2008: 87-93
[c35]Eneldo Loza Mencía, Johannes Fürnkranz: Efficient Pairwise Multilabel Classification for Large-Scale Problems in the Legal Domain. ECML/PKDD (2) 2008: 50-65
[c34]Dragan Gamberger, Nada Lavrac, Johannes Fürnkranz: Handling Unknown and Imprecise Attribute Values in Propositional Rule Learning: A Feature-Based Approach. PRICAI 2008: 636-645- 2007
[c33]Jan-Nikolas Sulzmann, Johannes Fürnkranz, Eyke Hüllermeier: On Pairwise Naive Bayes Classifiers. ECML 2007: 371-381
[c32]Eyke Hüllermeier, Johannes Fürnkranz: On Minimizing the Position Error in Label Ranking. ECML 2007: 583-590
[c31]
[c30]
[c29]Eneldo Loza Mencía, Johannes Fürnkranz: An Evaluation of Efficient Multilabel Classification Algorithms for Large-Scale Problems in the Legal Domain. LWA 2007: 126-132
[c28]- 2006
[j13]Michael H. Bowling, Johannes Fürnkranz, Thore Graepel, Ron Musick: Machine learning and games. Machine Learning 63(3): 211-215 (2006)
[c27]Klaus Brinker, Johannes Fürnkranz, Eyke Hüllermeier: A Unified Model for Multilabel Classification and Ranking. ECAI 2006: 489-493
[c26]Frederik Janssen, Johannes Fürnkranz: On Trading Off Consistency and Coverage in Inductive Rule Learning. LWA 2006: 306-313
[e3]Johannes Fürnkranz, Tobias Scheffer, Myra Spiliopoulou (Eds.): Machine Learning: ECML 2006, 17th European Conference on Machine Learning, Berlin, Germany, September 18-22, 2006, Proceedings. Lecture Notes in Computer Science 4212, Springer 2006, ISBN 3-540-45375-X
[e2]Johannes Fürnkranz, Tobias Scheffer, Myra Spiliopoulou (Eds.): Knowledge Discovery in Databases: PKDD 2006, 10th European Conference on Principles and Practice of Knowledge Discovery in Databases, Berlin, Germany, September 18-22, 2006, Proceedings. Lecture Notes in Computer Science 4213, Springer 2006, ISBN 3-540-45374-1- 2005
[j12]
[j11]Johannes Fürnkranz, Peter A. Flach: ROC 'n' Rule Learning-Towards a Better Understanding of Covering Algorithms. Machine Learning 58(1): 39-77 (2005)
[c25]Hervé Utard, Johannes Fürnkranz: Link-Local Features for Hypertext Classification. EWMF/KDO 2005: 51-64
[c24]Eyke Hüllermeier, Johannes Fürnkranz: Learning Label Preferences: Ranking Error Versus Position Error. IDA 2005: 180-191
[c23]Eyke Hüllermeier, Johannes Fürnkranz, Jürgen Beringer: On Position Error and Label Ranking through Iterated Choice. LWA 2005: 158-163
[p1]
[e1]Mathias Bauer, Boris Brandherm, Johannes Fürnkranz, Gunter Grieser, Andreas Hotho, Andreas Jedlitschka, Alexander Kröner (Eds.): Lernen, Wissensentdeckung und Adaptivität (LWA) 2005, GI Workshops, Saarbrücken, October 10th-12th, 2005. DFKI 2005- 2004
[c22]Johannes Fürnkranz: From Local to Global Patterns: Evaluation Issues in Rule Learning Algorithms. Local Pattern Detection 2004: 20-38
[c21]Johannes Fürnkranz, Peter A. Flach: An Analysis of Stopping and Filtering Criteria for Rule Learning. ECML 2004: 123-133
[c20]- 2003
[j10]
[c19]
[c18]
[c17]- 2002
[j9]Johannes Fürnkranz, Christian Holzbaur, Robert Temel: User Profiling for the MELVIL Knowledge Retrieval System. Applied Artificial Intelligence 16(4): 243-281 (2002)
[j8]Johannes Fürnkranz: Hyperlink ensembles: a case study in hypertext classification. Information Fusion 3(4): 299-312 (2002)
[j7]Johannes Fürnkranz: Round Robin Classification. Journal of Machine Learning Research 2: 721-747 (2002)
[c16]Johannes Fürnkranz: A Pathology of Bottom-Up Hill-Climbing in Inductive Rule Learning. ALT 2002: 263-277
[c15]- 2001
[c14]
[c13]
[c12]Hendrik Blockeel, Johannes Fürnkranz, Alexia Prskawetz, Francesco C. Billari: Detecting Temporal Change in Event Sequences: An Application to Demographic Data. PKDD 2001: 29-41- 2000
[j6]Klaus Kovar, Johannes Fürnkranz, Johann Petrak, Bernhard Pfahringer, Robert Trappl, Gerhard Widmer: Searching for Patterns in Political Event Sequences: Experiments with the Keds Database. Cybernetics and Systems 31(6): 649-668 (2000)
[c11]Johannes Fürnkranz, Bernhard Pfahringer, Hermann Kaindl, Stefan Kramer: Learning to Use Operational Advice. ECAI 2000: 291-295
1990 – 1999
- 1999
[j5]
[c10]Johannes Fürnkranz: Exploiting Structural Information for Text Classification on the WWW. IDA 1999: 487-498- 1998
[j4]Johannes Fürnkranz, Bernhard Pfahringer: Guest Editorial: First-Order Knowledge Discovery in Databases. Applied Artificial Intelligence 12(5): 345-361 (1998)
[j3]
[i1]- 1997
[j2]Johannes Fürnkranz, Johann Petrak, Robert Trappl: Knowledge Discovery in International Conflict Databases. Applied Artificial Intelligence 11(2): 91-118 (1997)
[j1]
[c9]Franz-Günter Winkler, Johannes Fürnkranz: On Effort in AI Research: A Description Along Two Dimensions. Deep Blue Versus Kasparov: The Significance for Artificial Intelligence 1997: 56-62
[c8]
[c7]- 1996
[c6]Robert Trappl, Johannes Fürnkranz, Johann Petrak: Digging for Peace: Using Machine Learning Methods for Assessing International Conflict Databases. ECAI 1996: 453-457- 1995
[c5]Johannes Fürnkranz: A Tight Integration of Pruning and Learning (Extended Abstract). ECML 1995: 291-294- 1994
[c4]
[c3]
[c2]
[c1]Johannes Fürnkranz: A Comparison of Pruning Methods for Relational Concept Learning. KDD Workshop 1994: 371-382
Coauthor Index
data released under the ODC-BY 1.0 license. See also our legal information page
last updated on 2013-10-02 11:03 CEST by the dblp team



